242 lines
9.3 KiB
Python
242 lines
9.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Depth Anything model."""
|
|
|
|
import unittest
|
|
|
|
from transformers import DepthAnythingConfig, Dinov2Config
|
|
from transformers.file_utils import is_torch_available, is_vision_available
|
|
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import DepthAnythingForDepthEstimation
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import DPTImageProcessor
|
|
|
|
|
|
class DepthAnythingModelTester:
|
|
# Copied from tests.models.dpt.test_modeling_dpt_auto_backbone.DPTModelTester.__init__
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=2,
|
|
num_channels=3,
|
|
image_size=32,
|
|
patch_size=16,
|
|
use_labels=True,
|
|
num_labels=3,
|
|
is_training=True,
|
|
hidden_size=4,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=2,
|
|
intermediate_size=8,
|
|
out_features=["stage1", "stage2"],
|
|
apply_layernorm=False,
|
|
reshape_hidden_states=False,
|
|
neck_hidden_sizes=[2, 2],
|
|
fusion_hidden_size=6,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.out_features = out_features
|
|
self.apply_layernorm = apply_layernorm
|
|
self.reshape_hidden_states = reshape_hidden_states
|
|
self.use_labels = use_labels
|
|
self.num_labels = num_labels
|
|
self.is_training = is_training
|
|
self.neck_hidden_sizes = neck_hidden_sizes
|
|
self.fusion_hidden_size = fusion_hidden_size
|
|
# DPT's sequence length
|
|
self.seq_length = (self.image_size // self.patch_size) ** 2 + 1
|
|
|
|
# Copied from tests.models.dpt.test_modeling_dpt_auto_backbone.DPTModelTester.prepare_config_and_inputs
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
|
|
labels = None
|
|
if self.use_labels:
|
|
labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, labels
|
|
|
|
def get_config(self):
|
|
return DepthAnythingConfig(
|
|
backbone_config=self.get_backbone_config(),
|
|
reassemble_hidden_size=self.hidden_size,
|
|
patch_size=self.patch_size,
|
|
neck_hidden_sizes=self.neck_hidden_sizes,
|
|
fusion_hidden_size=self.fusion_hidden_size,
|
|
)
|
|
|
|
# Copied from tests.models.dpt.test_modeling_dpt_auto_backbone.DPTModelTester.get_backbone_config
|
|
def get_backbone_config(self):
|
|
return Dinov2Config(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
is_training=self.is_training,
|
|
out_features=self.out_features,
|
|
reshape_hidden_states=self.reshape_hidden_states,
|
|
)
|
|
|
|
# Copied from tests.models.dpt.test_modeling_dpt_auto_backbone.DPTModelTester.create_and_check_for_depth_estimation with DPT->DepthAnything
|
|
def create_and_check_for_depth_estimation(self, config, pixel_values, labels):
|
|
config.num_labels = self.num_labels
|
|
model = DepthAnythingForDepthEstimation(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size))
|
|
|
|
# Copied from tests.models.dpt.test_modeling_dpt_auto_backbone.DPTModelTester.prepare_config_and_inputs_for_common
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values, labels = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class DepthAnythingModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as Depth Anything does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (DepthAnythingForDepthEstimation,) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"depth-estimation": DepthAnythingForDepthEstimation} if is_torch_available() else {}
|
|
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = DepthAnythingModelTester(self)
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=DepthAnythingConfig, has_text_modality=False, hidden_size=37
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.create_and_test_config_to_json_string()
|
|
self.config_tester.create_and_test_config_to_json_file()
|
|
self.config_tester.create_and_test_config_from_and_save_pretrained()
|
|
self.config_tester.create_and_test_config_from_and_save_pretrained_subfolder()
|
|
self.config_tester.create_and_test_config_with_num_labels()
|
|
self.config_tester.check_config_can_be_init_without_params()
|
|
self.config_tester.check_config_arguments_init()
|
|
|
|
@unittest.skip(reason="Depth Anything with AutoBackbone does not have a base model and hence no input_embeddings")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
def test_for_depth_estimation(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="Depth Anything does not support training yet")
|
|
def test_training(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Depth Anything does not support training yet")
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Depth Anything with AutoBackbone does not have a base model and hence no input_embeddings")
|
|
def test_model_common_attributes(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Depth Anything with AutoBackbone does not have a base model")
|
|
def test_save_load_fast_init_from_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Depth Anything with AutoBackbone does not have a base model")
|
|
def test_save_load_fast_init_to_base(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seems to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seems to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "LiheYoung/depth-anything-small-hf"
|
|
model = DepthAnythingForDepthEstimation.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_img():
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
return image
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
@slow
|
|
class DepthAnythingModelIntegrationTest(unittest.TestCase):
|
|
def test_inference(self):
|
|
image_processor = DPTImageProcessor.from_pretrained("LiheYoung/depth-anything-small-hf")
|
|
model = DepthAnythingForDepthEstimation.from_pretrained("LiheYoung/depth-anything-small-hf").to(torch_device)
|
|
|
|
image = prepare_img()
|
|
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
predicted_depth = outputs.predicted_depth
|
|
|
|
# verify the predicted depth
|
|
expected_shape = torch.Size([1, 518, 686])
|
|
self.assertEqual(predicted_depth.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[[8.8204, 8.6468, 8.6195], [8.3313, 8.6027, 8.7526], [8.6526, 8.6866, 8.7453]],
|
|
).to(torch_device)
|
|
|
|
self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-6))
|