229 lines
9.2 KiB
Python
229 lines
9.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from __future__ import annotations
|
|
|
|
import unittest
|
|
|
|
from transformers import is_tf_available, is_torch_available
|
|
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow
|
|
|
|
|
|
if is_tf_available():
|
|
from transformers import (
|
|
AutoConfig,
|
|
BertConfig,
|
|
GPT2Config,
|
|
T5Config,
|
|
TFAutoModel,
|
|
TFAutoModelForCausalLM,
|
|
TFAutoModelForMaskedLM,
|
|
TFAutoModelForPreTraining,
|
|
TFAutoModelForQuestionAnswering,
|
|
TFAutoModelForSeq2SeqLM,
|
|
TFAutoModelForSequenceClassification,
|
|
TFAutoModelWithLMHead,
|
|
TFBertForMaskedLM,
|
|
TFBertForPreTraining,
|
|
TFBertForQuestionAnswering,
|
|
TFBertForSequenceClassification,
|
|
TFBertModel,
|
|
TFGPT2LMHeadModel,
|
|
TFRobertaForMaskedLM,
|
|
TFT5ForConditionalGeneration,
|
|
)
|
|
|
|
if is_torch_available():
|
|
from transformers import (
|
|
AutoModel,
|
|
AutoModelForCausalLM,
|
|
AutoModelForMaskedLM,
|
|
AutoModelForPreTraining,
|
|
AutoModelForQuestionAnswering,
|
|
AutoModelForSeq2SeqLM,
|
|
AutoModelForSequenceClassification,
|
|
AutoModelWithLMHead,
|
|
BertForMaskedLM,
|
|
BertForPreTraining,
|
|
BertForQuestionAnswering,
|
|
BertForSequenceClassification,
|
|
BertModel,
|
|
GPT2LMHeadModel,
|
|
RobertaForMaskedLM,
|
|
T5ForConditionalGeneration,
|
|
)
|
|
|
|
|
|
@is_pt_tf_cross_test
|
|
class TFPTAutoModelTest(unittest.TestCase):
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
# model_name = 'google-bert/bert-base-uncased'
|
|
for model_name in ["google-bert/bert-base-uncased"]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = TFAutoModel.from_pretrained(model_name, from_pt=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFBertModel)
|
|
|
|
model = AutoModel.from_pretrained(model_name, from_tf=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, BertModel)
|
|
|
|
@slow
|
|
def test_model_for_pretraining_from_pretrained(self):
|
|
# model_name = 'google-bert/bert-base-uncased'
|
|
for model_name in ["google-bert/bert-base-uncased"]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = TFAutoModelForPreTraining.from_pretrained(model_name, from_pt=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFBertForPreTraining)
|
|
|
|
model = AutoModelForPreTraining.from_pretrained(model_name, from_tf=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, BertForPreTraining)
|
|
|
|
@slow
|
|
def test_model_for_causal_lm(self):
|
|
model_name = "openai-community/gpt2"
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, GPT2Config)
|
|
|
|
model = TFAutoModelForCausalLM.from_pretrained(model_name, from_pt=True)
|
|
model, loading_info = TFAutoModelForCausalLM.from_pretrained(
|
|
model_name, output_loading_info=True, from_pt=True
|
|
)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFGPT2LMHeadModel)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, from_tf=True)
|
|
model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True, from_tf=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, GPT2LMHeadModel)
|
|
|
|
@slow
|
|
def test_lmhead_model_from_pretrained(self):
|
|
model_name = "google-bert/bert-base-uncased"
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = TFAutoModelWithLMHead.from_pretrained(model_name, from_pt=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFBertForMaskedLM)
|
|
|
|
model = AutoModelWithLMHead.from_pretrained(model_name, from_tf=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, BertForMaskedLM)
|
|
|
|
@slow
|
|
def test_model_for_masked_lm(self):
|
|
model_name = "google-bert/bert-base-uncased"
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = TFAutoModelForMaskedLM.from_pretrained(model_name, from_pt=True)
|
|
model, loading_info = TFAutoModelForMaskedLM.from_pretrained(
|
|
model_name, output_loading_info=True, from_pt=True
|
|
)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFBertForMaskedLM)
|
|
|
|
model = AutoModelForMaskedLM.from_pretrained(model_name, from_tf=True)
|
|
model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True, from_tf=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, BertForMaskedLM)
|
|
|
|
@slow
|
|
def test_model_for_encoder_decoder_lm(self):
|
|
model_name = "google-t5/t5-base"
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, T5Config)
|
|
|
|
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name, from_pt=True)
|
|
model, loading_info = TFAutoModelForSeq2SeqLM.from_pretrained(
|
|
model_name, output_loading_info=True, from_pt=True
|
|
)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFT5ForConditionalGeneration)
|
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, from_tf=True)
|
|
model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True, from_tf=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, T5ForConditionalGeneration)
|
|
|
|
@slow
|
|
def test_sequence_classification_model_from_pretrained(self):
|
|
# model_name = 'google-bert/bert-base-uncased'
|
|
for model_name in ["google-bert/bert-base-uncased"]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = TFAutoModelForSequenceClassification.from_pretrained(model_name, from_pt=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFBertForSequenceClassification)
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name, from_tf=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, BertForSequenceClassification)
|
|
|
|
@slow
|
|
def test_question_answering_model_from_pretrained(self):
|
|
# model_name = 'google-bert/bert-base-uncased'
|
|
for model_name in ["google-bert/bert-base-uncased"]:
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = TFAutoModelForQuestionAnswering.from_pretrained(model_name, from_pt=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, TFBertForQuestionAnswering)
|
|
|
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name, from_tf=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, BertForQuestionAnswering)
|
|
|
|
def test_from_pretrained_identifier(self):
|
|
model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER, from_pt=True)
|
|
self.assertIsInstance(model, TFBertForMaskedLM)
|
|
self.assertEqual(model.num_parameters(), 14410)
|
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410)
|
|
|
|
model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER, from_tf=True)
|
|
self.assertIsInstance(model, BertForMaskedLM)
|
|
self.assertEqual(model.num_parameters(), 14410)
|
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410)
|
|
|
|
def test_from_identifier_from_model_type(self):
|
|
model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, from_pt=True)
|
|
self.assertIsInstance(model, TFRobertaForMaskedLM)
|
|
self.assertEqual(model.num_parameters(), 14410)
|
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410)
|
|
|
|
model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, from_tf=True)
|
|
self.assertIsInstance(model, RobertaForMaskedLM)
|
|
self.assertEqual(model.num_parameters(), 14410)
|
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410)
|