265 lines
10 KiB
Python
265 lines
10 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
from pathlib import Path
|
|
|
|
from transformers import AutoConfig, is_torch_available
|
|
from transformers.testing_utils import require_torch, torch_device
|
|
|
|
|
|
if is_torch_available():
|
|
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
|
|
|
|
|
|
@require_torch
|
|
class BenchmarkTest(unittest.TestCase):
|
|
def check_results_dict_not_empty(self, results):
|
|
for model_result in results.values():
|
|
for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]):
|
|
result = model_result["result"][batch_size][sequence_length]
|
|
self.assertIsNotNone(result)
|
|
|
|
def test_inference_no_configs(self):
|
|
MODEL_ID = "sshleifer/tiny-gpt2"
|
|
benchmark_args = PyTorchBenchmarkArguments(
|
|
models=[MODEL_ID],
|
|
training=False,
|
|
inference=True,
|
|
sequence_lengths=[8],
|
|
batch_sizes=[1],
|
|
multi_process=False,
|
|
)
|
|
benchmark = PyTorchBenchmark(benchmark_args)
|
|
results = benchmark.run()
|
|
self.check_results_dict_not_empty(results.time_inference_result)
|
|
self.check_results_dict_not_empty(results.memory_inference_result)
|
|
|
|
def test_inference_no_configs_only_pretrain(self):
|
|
MODEL_ID = "sgugger/tiny-distilbert-classification"
|
|
benchmark_args = PyTorchBenchmarkArguments(
|
|
models=[MODEL_ID],
|
|
training=False,
|
|
inference=True,
|
|
sequence_lengths=[8],
|
|
batch_sizes=[1],
|
|
multi_process=False,
|
|
only_pretrain_model=True,
|
|
)
|
|
benchmark = PyTorchBenchmark(benchmark_args)
|
|
results = benchmark.run()
|
|
self.check_results_dict_not_empty(results.time_inference_result)
|
|
self.check_results_dict_not_empty(results.memory_inference_result)
|
|
|
|
def test_inference_torchscript(self):
|
|
MODEL_ID = "sshleifer/tiny-gpt2"
|
|
benchmark_args = PyTorchBenchmarkArguments(
|
|
models=[MODEL_ID],
|
|
training=False,
|
|
inference=True,
|
|
torchscript=True,
|
|
sequence_lengths=[8],
|
|
batch_sizes=[1],
|
|
multi_process=False,
|
|
)
|
|
benchmark = PyTorchBenchmark(benchmark_args)
|
|
results = benchmark.run()
|
|
self.check_results_dict_not_empty(results.time_inference_result)
|
|
self.check_results_dict_not_empty(results.memory_inference_result)
|
|
|
|
@unittest.skipIf(torch_device == "cpu", "Cant do half precision")
|
|
def test_inference_fp16(self):
|
|
MODEL_ID = "sshleifer/tiny-gpt2"
|
|
benchmark_args = PyTorchBenchmarkArguments(
|
|
models=[MODEL_ID],
|
|
training=False,
|
|
inference=True,
|
|
fp16=True,
|
|
sequence_lengths=[8],
|
|
batch_sizes=[1],
|
|
multi_process=False,
|
|
)
|
|
benchmark = PyTorchBenchmark(benchmark_args)
|
|
results = benchmark.run()
|
|
self.check_results_dict_not_empty(results.time_inference_result)
|
|
self.check_results_dict_not_empty(results.memory_inference_result)
|
|
|
|
def test_inference_no_model_no_architectures(self):
|
|
MODEL_ID = "sshleifer/tiny-gpt2"
|
|
config = AutoConfig.from_pretrained(MODEL_ID)
|
|
# set architectures equal to `None`
|
|
config.architectures = None
|
|
benchmark_args = PyTorchBenchmarkArguments(
|
|
models=[MODEL_ID],
|
|
training=True,
|
|
inference=True,
|
|
sequence_lengths=[8],
|
|
batch_sizes=[1],
|
|
multi_process=False,
|
|
)
|
|
benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
|
|
results = benchmark.run()
|
|
self.check_results_dict_not_empty(results.time_inference_result)
|
|
self.check_results_dict_not_empty(results.memory_inference_result)
|
|
|
|
def test_train_no_configs(self):
|
|
MODEL_ID = "sshleifer/tiny-gpt2"
|
|
benchmark_args = PyTorchBenchmarkArguments(
|
|
models=[MODEL_ID],
|
|
training=True,
|
|
inference=False,
|
|
sequence_lengths=[8],
|
|
batch_sizes=[1],
|
|
multi_process=False,
|
|
)
|
|
benchmark = PyTorchBenchmark(benchmark_args)
|
|
results = benchmark.run()
|
|
self.check_results_dict_not_empty(results.time_train_result)
|
|
self.check_results_dict_not_empty(results.memory_train_result)
|
|
|
|
@unittest.skipIf(torch_device == "cpu", "Can't do half precision")
|
|
def test_train_no_configs_fp16(self):
|
|
MODEL_ID = "sshleifer/tiny-gpt2"
|
|
benchmark_args = PyTorchBenchmarkArguments(
|
|
models=[MODEL_ID],
|
|
training=True,
|
|
inference=False,
|
|
sequence_lengths=[8],
|
|
batch_sizes=[1],
|
|
fp16=True,
|
|
multi_process=False,
|
|
)
|
|
benchmark = PyTorchBenchmark(benchmark_args)
|
|
results = benchmark.run()
|
|
self.check_results_dict_not_empty(results.time_train_result)
|
|
self.check_results_dict_not_empty(results.memory_train_result)
|
|
|
|
def test_inference_with_configs(self):
|
|
MODEL_ID = "sshleifer/tiny-gpt2"
|
|
config = AutoConfig.from_pretrained(MODEL_ID)
|
|
benchmark_args = PyTorchBenchmarkArguments(
|
|
models=[MODEL_ID],
|
|
training=False,
|
|
inference=True,
|
|
sequence_lengths=[8],
|
|
batch_sizes=[1],
|
|
multi_process=False,
|
|
)
|
|
benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
|
|
results = benchmark.run()
|
|
self.check_results_dict_not_empty(results.time_inference_result)
|
|
self.check_results_dict_not_empty(results.memory_inference_result)
|
|
|
|
def test_inference_encoder_decoder_with_configs(self):
|
|
MODEL_ID = "sshleifer/tinier_bart"
|
|
config = AutoConfig.from_pretrained(MODEL_ID)
|
|
benchmark_args = PyTorchBenchmarkArguments(
|
|
models=[MODEL_ID],
|
|
training=False,
|
|
inference=True,
|
|
sequence_lengths=[8],
|
|
batch_sizes=[1],
|
|
multi_process=False,
|
|
)
|
|
benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
|
|
results = benchmark.run()
|
|
self.check_results_dict_not_empty(results.time_inference_result)
|
|
self.check_results_dict_not_empty(results.memory_inference_result)
|
|
|
|
def test_train_with_configs(self):
|
|
MODEL_ID = "sshleifer/tiny-gpt2"
|
|
config = AutoConfig.from_pretrained(MODEL_ID)
|
|
benchmark_args = PyTorchBenchmarkArguments(
|
|
models=[MODEL_ID],
|
|
training=True,
|
|
inference=False,
|
|
sequence_lengths=[8],
|
|
batch_sizes=[1],
|
|
multi_process=False,
|
|
)
|
|
benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
|
|
results = benchmark.run()
|
|
self.check_results_dict_not_empty(results.time_train_result)
|
|
self.check_results_dict_not_empty(results.memory_train_result)
|
|
|
|
def test_train_encoder_decoder_with_configs(self):
|
|
MODEL_ID = "sshleifer/tinier_bart"
|
|
config = AutoConfig.from_pretrained(MODEL_ID)
|
|
benchmark_args = PyTorchBenchmarkArguments(
|
|
models=[MODEL_ID],
|
|
training=True,
|
|
inference=True,
|
|
sequence_lengths=[8],
|
|
batch_sizes=[1],
|
|
multi_process=False,
|
|
)
|
|
benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
|
|
results = benchmark.run()
|
|
self.check_results_dict_not_empty(results.time_train_result)
|
|
self.check_results_dict_not_empty(results.memory_train_result)
|
|
|
|
def test_save_csv_files(self):
|
|
MODEL_ID = "sshleifer/tiny-gpt2"
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
benchmark_args = PyTorchBenchmarkArguments(
|
|
models=[MODEL_ID],
|
|
training=True,
|
|
inference=True,
|
|
save_to_csv=True,
|
|
sequence_lengths=[8],
|
|
batch_sizes=[1],
|
|
inference_time_csv_file=os.path.join(tmp_dir, "inf_time.csv"),
|
|
train_memory_csv_file=os.path.join(tmp_dir, "train_mem.csv"),
|
|
inference_memory_csv_file=os.path.join(tmp_dir, "inf_mem.csv"),
|
|
train_time_csv_file=os.path.join(tmp_dir, "train_time.csv"),
|
|
env_info_csv_file=os.path.join(tmp_dir, "env.csv"),
|
|
multi_process=False,
|
|
)
|
|
benchmark = PyTorchBenchmark(benchmark_args)
|
|
benchmark.run()
|
|
self.assertTrue(Path(os.path.join(tmp_dir, "inf_time.csv")).exists())
|
|
self.assertTrue(Path(os.path.join(tmp_dir, "train_time.csv")).exists())
|
|
self.assertTrue(Path(os.path.join(tmp_dir, "inf_mem.csv")).exists())
|
|
self.assertTrue(Path(os.path.join(tmp_dir, "train_mem.csv")).exists())
|
|
self.assertTrue(Path(os.path.join(tmp_dir, "env.csv")).exists())
|
|
|
|
def test_trace_memory(self):
|
|
MODEL_ID = "sshleifer/tiny-gpt2"
|
|
|
|
def _check_summary_is_not_empty(summary):
|
|
self.assertTrue(hasattr(summary, "sequential"))
|
|
self.assertTrue(hasattr(summary, "cumulative"))
|
|
self.assertTrue(hasattr(summary, "current"))
|
|
self.assertTrue(hasattr(summary, "total"))
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
benchmark_args = PyTorchBenchmarkArguments(
|
|
models=[MODEL_ID],
|
|
training=True,
|
|
inference=True,
|
|
sequence_lengths=[8],
|
|
batch_sizes=[1],
|
|
log_filename=os.path.join(tmp_dir, "log.txt"),
|
|
log_print=True,
|
|
trace_memory_line_by_line=True,
|
|
multi_process=False,
|
|
)
|
|
benchmark = PyTorchBenchmark(benchmark_args)
|
|
result = benchmark.run()
|
|
_check_summary_is_not_empty(result.inference_summary)
|
|
_check_summary_is_not_empty(result.train_summary)
|
|
self.assertTrue(Path(os.path.join(tmp_dir, "log.txt")).exists())
|