501 lines
13 KiB
Python
501 lines
13 KiB
Python
"""
|
|
coding=utf-8
|
|
Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal
|
|
Adapted From Facebook Inc, Detectron2
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.import copy
|
|
"""
|
|
|
|
import colorsys
|
|
import io
|
|
|
|
import cv2
|
|
import matplotlib as mpl
|
|
import matplotlib.colors as mplc
|
|
import matplotlib.figure as mplfigure
|
|
import numpy as np
|
|
import torch
|
|
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
|
|
|
from utils import img_tensorize
|
|
|
|
|
|
_SMALL_OBJ = 1000
|
|
|
|
|
|
class SingleImageViz:
|
|
def __init__(
|
|
self,
|
|
img,
|
|
scale=1.2,
|
|
edgecolor="g",
|
|
alpha=0.5,
|
|
linestyle="-",
|
|
saveas="test_out.jpg",
|
|
rgb=True,
|
|
pynb=False,
|
|
id2obj=None,
|
|
id2attr=None,
|
|
pad=0.7,
|
|
):
|
|
"""
|
|
img: an RGB image of shape (H, W, 3).
|
|
"""
|
|
if isinstance(img, torch.Tensor):
|
|
img = img.numpy().astype("np.uint8")
|
|
if isinstance(img, str):
|
|
img = img_tensorize(img)
|
|
assert isinstance(img, np.ndarray)
|
|
|
|
width, height = img.shape[1], img.shape[0]
|
|
fig = mplfigure.Figure(frameon=False)
|
|
dpi = fig.get_dpi()
|
|
width_in = (width * scale + 1e-2) / dpi
|
|
height_in = (height * scale + 1e-2) / dpi
|
|
fig.set_size_inches(width_in, height_in)
|
|
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
|
|
ax.axis("off")
|
|
ax.set_xlim(0.0, width)
|
|
ax.set_ylim(height)
|
|
|
|
self.saveas = saveas
|
|
self.rgb = rgb
|
|
self.pynb = pynb
|
|
self.img = img
|
|
self.edgecolor = edgecolor
|
|
self.alpha = 0.5
|
|
self.linestyle = linestyle
|
|
self.font_size = int(np.sqrt(min(height, width)) * scale // 3)
|
|
self.width = width
|
|
self.height = height
|
|
self.scale = scale
|
|
self.fig = fig
|
|
self.ax = ax
|
|
self.pad = pad
|
|
self.id2obj = id2obj
|
|
self.id2attr = id2attr
|
|
self.canvas = FigureCanvasAgg(fig)
|
|
|
|
def add_box(self, box, color=None):
|
|
if color is None:
|
|
color = self.edgecolor
|
|
(x0, y0, x1, y1) = box
|
|
width = x1 - x0
|
|
height = y1 - y0
|
|
self.ax.add_patch(
|
|
mpl.patches.Rectangle(
|
|
(x0, y0),
|
|
width,
|
|
height,
|
|
fill=False,
|
|
edgecolor=color,
|
|
linewidth=self.font_size // 3,
|
|
alpha=self.alpha,
|
|
linestyle=self.linestyle,
|
|
)
|
|
)
|
|
|
|
def draw_boxes(self, boxes, obj_ids=None, obj_scores=None, attr_ids=None, attr_scores=None):
|
|
if len(boxes.shape) > 2:
|
|
boxes = boxes[0]
|
|
if len(obj_ids.shape) > 1:
|
|
obj_ids = obj_ids[0]
|
|
if len(obj_scores.shape) > 1:
|
|
obj_scores = obj_scores[0]
|
|
if len(attr_ids.shape) > 1:
|
|
attr_ids = attr_ids[0]
|
|
if len(attr_scores.shape) > 1:
|
|
attr_scores = attr_scores[0]
|
|
if isinstance(boxes, torch.Tensor):
|
|
boxes = boxes.numpy()
|
|
if isinstance(boxes, list):
|
|
boxes = np.array(boxes)
|
|
assert isinstance(boxes, np.ndarray)
|
|
areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1)
|
|
sorted_idxs = np.argsort(-areas).tolist()
|
|
boxes = boxes[sorted_idxs] if boxes is not None else None
|
|
obj_ids = obj_ids[sorted_idxs] if obj_ids is not None else None
|
|
obj_scores = obj_scores[sorted_idxs] if obj_scores is not None else None
|
|
attr_ids = attr_ids[sorted_idxs] if attr_ids is not None else None
|
|
attr_scores = attr_scores[sorted_idxs] if attr_scores is not None else None
|
|
|
|
assigned_colors = [self._random_color(maximum=1) for _ in range(len(boxes))]
|
|
assigned_colors = [assigned_colors[idx] for idx in sorted_idxs]
|
|
if obj_ids is not None:
|
|
labels = self._create_text_labels_attr(obj_ids, obj_scores, attr_ids, attr_scores)
|
|
for i in range(len(boxes)):
|
|
color = assigned_colors[i]
|
|
self.add_box(boxes[i], color)
|
|
self.draw_labels(labels[i], boxes[i], color)
|
|
|
|
def draw_labels(self, label, box, color):
|
|
x0, y0, x1, y1 = box
|
|
text_pos = (x0, y0)
|
|
instance_area = (y1 - y0) * (x1 - x0)
|
|
small = _SMALL_OBJ * self.scale
|
|
if instance_area < small or y1 - y0 < 40 * self.scale:
|
|
if y1 >= self.height - 5:
|
|
text_pos = (x1, y0)
|
|
else:
|
|
text_pos = (x0, y1)
|
|
|
|
height_ratio = (y1 - y0) / np.sqrt(self.height * self.width)
|
|
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
|
|
font_size = np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2)
|
|
font_size *= 0.75 * self.font_size
|
|
|
|
self.draw_text(
|
|
text=label,
|
|
position=text_pos,
|
|
color=lighter_color,
|
|
)
|
|
|
|
def draw_text(
|
|
self,
|
|
text,
|
|
position,
|
|
color="g",
|
|
ha="left",
|
|
):
|
|
rotation = 0
|
|
font_size = self.font_size
|
|
color = np.maximum(list(mplc.to_rgb(color)), 0.2)
|
|
color[np.argmax(color)] = max(0.8, np.max(color))
|
|
bbox = {
|
|
"facecolor": "black",
|
|
"alpha": self.alpha,
|
|
"pad": self.pad,
|
|
"edgecolor": "none",
|
|
}
|
|
x, y = position
|
|
self.ax.text(
|
|
x,
|
|
y,
|
|
text,
|
|
size=font_size * self.scale,
|
|
family="sans-serif",
|
|
bbox=bbox,
|
|
verticalalignment="top",
|
|
horizontalalignment=ha,
|
|
color=color,
|
|
zorder=10,
|
|
rotation=rotation,
|
|
)
|
|
|
|
def save(self, saveas=None):
|
|
if saveas is None:
|
|
saveas = self.saveas
|
|
if saveas.lower().endswith(".jpg") or saveas.lower().endswith(".png"):
|
|
cv2.imwrite(
|
|
saveas,
|
|
self._get_buffer()[:, :, ::-1],
|
|
)
|
|
else:
|
|
self.fig.savefig(saveas)
|
|
|
|
def _create_text_labels_attr(self, classes, scores, attr_classes, attr_scores):
|
|
labels = [self.id2obj[i] for i in classes]
|
|
attr_labels = [self.id2attr[i] for i in attr_classes]
|
|
labels = [
|
|
f"{label} {score:.2f} {attr} {attr_score:.2f}"
|
|
for label, score, attr, attr_score in zip(labels, scores, attr_labels, attr_scores)
|
|
]
|
|
return labels
|
|
|
|
def _create_text_labels(self, classes, scores):
|
|
labels = [self.id2obj[i] for i in classes]
|
|
if scores is not None:
|
|
if labels is None:
|
|
labels = ["{:.0f}%".format(s * 100) for s in scores]
|
|
else:
|
|
labels = ["{} {:.0f}%".format(li, s * 100) for li, s in zip(labels, scores)]
|
|
return labels
|
|
|
|
def _random_color(self, maximum=255):
|
|
idx = np.random.randint(0, len(_COLORS))
|
|
ret = _COLORS[idx] * maximum
|
|
if not self.rgb:
|
|
ret = ret[::-1]
|
|
return ret
|
|
|
|
def _get_buffer(self):
|
|
if not self.pynb:
|
|
s, (width, height) = self.canvas.print_to_buffer()
|
|
if (width, height) != (self.width, self.height):
|
|
img = cv2.resize(self.img, (width, height))
|
|
else:
|
|
img = self.img
|
|
else:
|
|
buf = io.BytesIO() # works for cairo backend
|
|
self.canvas.print_rgba(buf)
|
|
width, height = self.width, self.height
|
|
s = buf.getvalue()
|
|
img = self.img
|
|
|
|
buffer = np.frombuffer(s, dtype="uint8")
|
|
img_rgba = buffer.reshape(height, width, 4)
|
|
rgb, alpha = np.split(img_rgba, [3], axis=2)
|
|
|
|
try:
|
|
import numexpr as ne # fuse them with numexpr
|
|
|
|
visualized_image = ne.evaluate("img * (1 - alpha / 255.0) + rgb * (alpha / 255.0)")
|
|
except ImportError:
|
|
alpha = alpha.astype("float32") / 255.0
|
|
visualized_image = img * (1 - alpha) + rgb * alpha
|
|
|
|
return visualized_image.astype("uint8")
|
|
|
|
def _change_color_brightness(self, color, brightness_factor):
|
|
assert brightness_factor >= -1.0 and brightness_factor <= 1.0
|
|
color = mplc.to_rgb(color)
|
|
polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
|
|
modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1])
|
|
modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness
|
|
modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness
|
|
modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2])
|
|
return modified_color
|
|
|
|
|
|
# Color map
|
|
_COLORS = (
|
|
np.array(
|
|
[
|
|
0.000,
|
|
0.447,
|
|
0.741,
|
|
0.850,
|
|
0.325,
|
|
0.098,
|
|
0.929,
|
|
0.694,
|
|
0.125,
|
|
0.494,
|
|
0.184,
|
|
0.556,
|
|
0.466,
|
|
0.674,
|
|
0.188,
|
|
0.301,
|
|
0.745,
|
|
0.933,
|
|
0.635,
|
|
0.078,
|
|
0.184,
|
|
0.300,
|
|
0.300,
|
|
0.300,
|
|
0.600,
|
|
0.600,
|
|
0.600,
|
|
1.000,
|
|
0.000,
|
|
0.000,
|
|
1.000,
|
|
0.500,
|
|
0.000,
|
|
0.749,
|
|
0.749,
|
|
0.000,
|
|
0.000,
|
|
1.000,
|
|
0.000,
|
|
0.000,
|
|
0.000,
|
|
1.000,
|
|
0.667,
|
|
0.000,
|
|
1.000,
|
|
0.333,
|
|
0.333,
|
|
0.000,
|
|
0.333,
|
|
0.667,
|
|
0.000,
|
|
0.333,
|
|
1.000,
|
|
0.000,
|
|
0.667,
|
|
0.333,
|
|
0.000,
|
|
0.667,
|
|
0.667,
|
|
0.000,
|
|
0.667,
|
|
1.000,
|
|
0.000,
|
|
1.000,
|
|
0.333,
|
|
0.000,
|
|
1.000,
|
|
0.667,
|
|
0.000,
|
|
1.000,
|
|
1.000,
|
|
0.000,
|
|
0.000,
|
|
0.333,
|
|
0.500,
|
|
0.000,
|
|
0.667,
|
|
0.500,
|
|
0.000,
|
|
1.000,
|
|
0.500,
|
|
0.333,
|
|
0.000,
|
|
0.500,
|
|
0.333,
|
|
0.333,
|
|
0.500,
|
|
0.333,
|
|
0.667,
|
|
0.500,
|
|
0.333,
|
|
1.000,
|
|
0.500,
|
|
0.667,
|
|
0.000,
|
|
0.500,
|
|
0.667,
|
|
0.333,
|
|
0.500,
|
|
0.667,
|
|
0.667,
|
|
0.500,
|
|
0.667,
|
|
1.000,
|
|
0.500,
|
|
1.000,
|
|
0.000,
|
|
0.500,
|
|
1.000,
|
|
0.333,
|
|
0.500,
|
|
1.000,
|
|
0.667,
|
|
0.500,
|
|
1.000,
|
|
1.000,
|
|
0.500,
|
|
0.000,
|
|
0.333,
|
|
1.000,
|
|
0.000,
|
|
0.667,
|
|
1.000,
|
|
0.000,
|
|
1.000,
|
|
1.000,
|
|
0.333,
|
|
0.000,
|
|
1.000,
|
|
0.333,
|
|
0.333,
|
|
1.000,
|
|
0.333,
|
|
0.667,
|
|
1.000,
|
|
0.333,
|
|
1.000,
|
|
1.000,
|
|
0.667,
|
|
0.000,
|
|
1.000,
|
|
0.667,
|
|
0.333,
|
|
1.000,
|
|
0.667,
|
|
0.667,
|
|
1.000,
|
|
0.667,
|
|
1.000,
|
|
1.000,
|
|
1.000,
|
|
0.000,
|
|
1.000,
|
|
1.000,
|
|
0.333,
|
|
1.000,
|
|
1.000,
|
|
0.667,
|
|
1.000,
|
|
0.333,
|
|
0.000,
|
|
0.000,
|
|
0.500,
|
|
0.000,
|
|
0.000,
|
|
0.667,
|
|
0.000,
|
|
0.000,
|
|
0.833,
|
|
0.000,
|
|
0.000,
|
|
1.000,
|
|
0.000,
|
|
0.000,
|
|
0.000,
|
|
0.167,
|
|
0.000,
|
|
0.000,
|
|
0.333,
|
|
0.000,
|
|
0.000,
|
|
0.500,
|
|
0.000,
|
|
0.000,
|
|
0.667,
|
|
0.000,
|
|
0.000,
|
|
0.833,
|
|
0.000,
|
|
0.000,
|
|
1.000,
|
|
0.000,
|
|
0.000,
|
|
0.000,
|
|
0.167,
|
|
0.000,
|
|
0.000,
|
|
0.333,
|
|
0.000,
|
|
0.000,
|
|
0.500,
|
|
0.000,
|
|
0.000,
|
|
0.667,
|
|
0.000,
|
|
0.000,
|
|
0.833,
|
|
0.000,
|
|
0.000,
|
|
1.000,
|
|
0.000,
|
|
0.000,
|
|
0.000,
|
|
0.143,
|
|
0.143,
|
|
0.143,
|
|
0.857,
|
|
0.857,
|
|
0.857,
|
|
1.000,
|
|
1.000,
|
|
1.000,
|
|
]
|
|
)
|
|
.astype(np.float32)
|
|
.reshape(-1, 3)
|
|
)
|