392 lines
15 KiB
Python
392 lines
15 KiB
Python
#!/usr/bin/env python3
|
|
"""This script is adapted from the Bertology pruning code (https://github.com/huggingface/transformers/blob/783d7d2629e97c5f0c5f9ef01b8c66410275c204/examples/research_projects/bertology/run_bertology.py)
|
|
to prune GPT-like models. The author is @altsoph.
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
from datetime import datetime
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
|
|
from tqdm import tqdm
|
|
|
|
from transformers import GPT2LMHeadModel
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def save_model(model, dirpath):
|
|
# save results
|
|
if os.path.exists(dirpath):
|
|
if os.path.exists(os.path.join(dirpath, "config.json")) and os.path.isfile(
|
|
os.path.join(dirpath, "config.json")
|
|
):
|
|
os.remove(os.path.join(dirpath, "config.json"))
|
|
if os.path.exists(os.path.join(dirpath, "pytorch_model.bin")) and os.path.isfile(
|
|
os.path.join(dirpath, "pytorch_model.bin")
|
|
):
|
|
os.remove(os.path.join(dirpath, "pytorch_model.bin"))
|
|
else:
|
|
os.makedirs(dirpath)
|
|
model.save_pretrained(dirpath)
|
|
|
|
|
|
def entropy(p, unlogit=False):
|
|
"""Compute the entropy of a probability distribution"""
|
|
exponent = 2
|
|
if unlogit:
|
|
p = torch.pow(p, exponent)
|
|
plogp = p * torch.log(p)
|
|
plogp[p == 0] = 0
|
|
return -plogp.sum(dim=-1)
|
|
|
|
|
|
def print_2d_tensor(tensor):
|
|
"""Print a 2D tensor"""
|
|
logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor))))
|
|
for row in range(len(tensor)):
|
|
if tensor.dtype != torch.long:
|
|
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:.5f}" for x in tensor[row].cpu().data))
|
|
else:
|
|
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:d}" for x in tensor[row].cpu().data))
|
|
|
|
|
|
def compute_heads_importance(
|
|
args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None, actually_pruned=False
|
|
):
|
|
"""This method shows how to compute:
|
|
- head attention entropy
|
|
- head importance scores according to http://arxiv.org/abs/1905.10650
|
|
"""
|
|
# Prepare our tensors
|
|
n_layers, n_heads = model.config.num_hidden_layers, model.config.num_attention_heads
|
|
head_importance = torch.zeros(n_layers, n_heads).to(args.device)
|
|
attn_entropy = torch.zeros(n_layers, n_heads).to(args.device)
|
|
|
|
if head_mask is None:
|
|
head_mask = torch.ones(n_layers, n_heads).to(args.device)
|
|
|
|
head_mask.requires_grad_(requires_grad=True)
|
|
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
|
|
if actually_pruned:
|
|
head_mask = None
|
|
|
|
tot_tokens = 0.0
|
|
total_loss = 0.0
|
|
for step, inputs in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
|
|
inputs = tuple(t.to(args.device) for t in inputs)
|
|
(input_ids,) = inputs
|
|
|
|
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
|
|
outputs = model(input_ids, labels=input_ids, head_mask=head_mask)
|
|
# (loss), lm_logits, presents, (all hidden_states), (attentions)
|
|
loss, _, all_attentions = (
|
|
outputs[0],
|
|
outputs[1],
|
|
outputs[-1],
|
|
) # Loss and logits are the first, attention the last
|
|
loss.backward() # Backpropagate to populate the gradients in the head mask
|
|
total_loss += loss.detach().cpu().numpy()
|
|
if compute_entropy:
|
|
for layer, attn in enumerate(all_attentions):
|
|
masked_entropy = entropy(attn.detach(), True)
|
|
attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach()
|
|
|
|
if compute_importance:
|
|
head_importance += head_mask.grad.abs().detach()
|
|
tot_tokens += torch.ones_like(input_ids).float().detach().sum().data
|
|
|
|
# Normalize
|
|
attn_entropy /= tot_tokens
|
|
head_importance /= tot_tokens
|
|
# Layerwise importance normalization
|
|
if not args.dont_normalize_importance_by_layer:
|
|
exponent = 2
|
|
norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1 / exponent)
|
|
head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20
|
|
|
|
if not args.dont_normalize_global_importance:
|
|
head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
|
|
|
|
# Print matrices
|
|
if compute_entropy:
|
|
logger.info("Attention entropies")
|
|
print_2d_tensor(attn_entropy)
|
|
if compute_importance:
|
|
logger.info("Head importance scores")
|
|
print_2d_tensor(head_importance)
|
|
logger.info("Head ranked by importance scores")
|
|
head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device)
|
|
head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange(
|
|
head_importance.numel(), device=args.device
|
|
)
|
|
head_ranks = head_ranks.view_as(head_importance)
|
|
print_2d_tensor(head_ranks)
|
|
return attn_entropy, head_importance, total_loss
|
|
|
|
|
|
def mask_heads(args, model, eval_dataloader):
|
|
"""This method shows how to mask head (set some heads to zero), to test the effect on the network,
|
|
based on the head importance scores, as described in Michel et al. (http://arxiv.org/abs/1905.10650)
|
|
"""
|
|
_, head_importance, loss = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False)
|
|
original_score = 1 / loss # instead of downsteam score use the LM loss
|
|
logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold)
|
|
|
|
new_head_mask = torch.ones_like(head_importance)
|
|
num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount))
|
|
|
|
current_score = original_score
|
|
while current_score >= original_score * args.masking_threshold:
|
|
head_mask = new_head_mask.clone().detach() # save current head mask
|
|
# heads from least important to most - keep only not-masked heads
|
|
head_importance[head_mask == 0.0] = float("Inf")
|
|
current_heads_to_mask = head_importance.view(-1).sort()[1]
|
|
|
|
if len(current_heads_to_mask) <= num_to_mask:
|
|
print("BREAK BY num_to_mask")
|
|
break
|
|
|
|
# mask heads
|
|
current_heads_to_mask = current_heads_to_mask[:num_to_mask]
|
|
logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist()))
|
|
new_head_mask = new_head_mask.view(-1)
|
|
new_head_mask[current_heads_to_mask] = 0.0
|
|
new_head_mask = new_head_mask.view_as(head_mask)
|
|
new_head_mask = new_head_mask.clone().detach()
|
|
print_2d_tensor(new_head_mask)
|
|
|
|
# Compute metric and head importance again
|
|
_, head_importance, loss = compute_heads_importance(
|
|
args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask
|
|
)
|
|
current_score = 1 / loss
|
|
logger.info(
|
|
"Masking: current score: %f, remaining heads %d (%.1f percents)",
|
|
current_score,
|
|
new_head_mask.sum(),
|
|
new_head_mask.sum() / new_head_mask.numel() * 100,
|
|
)
|
|
|
|
logger.info("Final head mask")
|
|
print_2d_tensor(head_mask)
|
|
np.save(os.path.join(args.output_dir, "head_mask.npy"), head_mask.detach().cpu().numpy())
|
|
|
|
return head_mask
|
|
|
|
|
|
def prune_heads(args, model, eval_dataloader, head_mask):
|
|
"""This method shows how to prune head (remove heads weights) based on
|
|
the head importance scores as described in Michel et al. (http://arxiv.org/abs/1905.10650)
|
|
"""
|
|
# Try pruning and test time speedup
|
|
# Pruning is like masking but we actually remove the masked weights
|
|
before_time = datetime.now()
|
|
_, _, loss = compute_heads_importance(
|
|
args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=head_mask
|
|
)
|
|
score_masking = 1 / loss
|
|
original_time = datetime.now() - before_time
|
|
|
|
original_num_params = sum(p.numel() for p in model.parameters())
|
|
heads_to_prune = {
|
|
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(head_mask))
|
|
}
|
|
|
|
for k, v in heads_to_prune.items():
|
|
if isinstance(v, int):
|
|
heads_to_prune[k] = [
|
|
v,
|
|
]
|
|
|
|
assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item()
|
|
model.prune_heads(heads_to_prune)
|
|
pruned_num_params = sum(p.numel() for p in model.parameters())
|
|
|
|
before_time = datetime.now()
|
|
_, _, loss = compute_heads_importance(
|
|
args,
|
|
model,
|
|
eval_dataloader,
|
|
compute_entropy=False,
|
|
compute_importance=False,
|
|
head_mask=None,
|
|
actually_pruned=True,
|
|
)
|
|
|
|
score_pruning = 1 / loss
|
|
new_time = datetime.now() - before_time
|
|
|
|
logger.info(
|
|
"Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)",
|
|
original_num_params,
|
|
pruned_num_params,
|
|
pruned_num_params / original_num_params * 100,
|
|
)
|
|
logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning)
|
|
logger.info("Pruning: speed ratio (original timing / new timing): %f percents", original_time / new_time * 100)
|
|
save_model(model, args.output_dir)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
# Required parameters
|
|
parser.add_argument(
|
|
"--data_dir",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
|
|
)
|
|
parser.add_argument(
|
|
"--model_name_or_path",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="Path to pretrained model or model identifier from huggingface.co/models",
|
|
)
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="The output directory where the model predictions and checkpoints will be written.",
|
|
)
|
|
|
|
# Other parameters
|
|
parser.add_argument(
|
|
"--config_name",
|
|
default="",
|
|
type=str,
|
|
help="Pretrained config name or path if not the same as model_name_or_path",
|
|
)
|
|
parser.add_argument(
|
|
"--tokenizer_name",
|
|
default="",
|
|
type=str,
|
|
help="Pretrained tokenizer name or path if not the same as model_name_or_path",
|
|
)
|
|
parser.add_argument(
|
|
"--cache_dir",
|
|
default=None,
|
|
type=str,
|
|
help="Where do you want to store the pre-trained models downloaded from s3",
|
|
)
|
|
parser.add_argument(
|
|
"--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances."
|
|
)
|
|
parser.add_argument(
|
|
"--overwrite_output_dir", action="store_true", help="Whether to overwrite data in output directory"
|
|
)
|
|
parser.add_argument(
|
|
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dont_normalize_importance_by_layer", action="store_true", help="Don't normalize importance score by layers"
|
|
)
|
|
parser.add_argument(
|
|
"--dont_normalize_global_importance",
|
|
action="store_true",
|
|
help="Don't normalize all importance scores between 0 and 1",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--try_masking", action="store_true", help="Whether to try to mask head until a threshold of accuracy."
|
|
)
|
|
parser.add_argument(
|
|
"--masking_threshold",
|
|
default=0.9,
|
|
type=float,
|
|
help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value).",
|
|
)
|
|
parser.add_argument(
|
|
"--masking_amount", default=0.1, type=float, help="Amount to heads to masking at each masking step."
|
|
)
|
|
parser.add_argument("--metric_name", default="acc", type=str, help="Metric to use for head masking.")
|
|
|
|
parser.add_argument(
|
|
"--max_seq_length",
|
|
default=128,
|
|
type=int,
|
|
help=(
|
|
"The maximum total input sequence length after WordPiece tokenization. \n"
|
|
"Sequences longer than this will be truncated, sequences shorter padded."
|
|
),
|
|
)
|
|
parser.add_argument("--batch_size", default=1, type=int, help="Batch size.")
|
|
|
|
parser.add_argument("--seed", type=int, default=42)
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
|
|
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
|
|
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
|
|
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
|
|
args = parser.parse_args()
|
|
|
|
if args.server_ip and args.server_port:
|
|
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
|
import ptvsd
|
|
|
|
print("Waiting for debugger attach")
|
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
|
ptvsd.wait_for_attach()
|
|
|
|
# Setup devices and distributed training
|
|
if args.local_rank == -1 or args.no_cuda:
|
|
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
|
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
|
|
else:
|
|
torch.cuda.set_device(args.local_rank)
|
|
args.device = torch.device("cuda", args.local_rank)
|
|
args.n_gpu = 1
|
|
torch.distributed.init_process_group(backend="nccl") # Initializes the distributed backend
|
|
|
|
# Setup logging
|
|
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
|
|
logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1)))
|
|
|
|
model = GPT2LMHeadModel.from_pretrained(args.model_name_or_path)
|
|
|
|
# Distributed and parallel training
|
|
model.to(args.device)
|
|
if args.local_rank != -1:
|
|
model = nn.parallel.DistributedDataParallel(
|
|
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
|
|
)
|
|
elif args.n_gpu > 1:
|
|
model = nn.DataParallel(model)
|
|
|
|
# Print/save training arguments
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
torch.save(args, os.path.join(args.output_dir, "run_args.bin"))
|
|
logger.info("Training/evaluation parameters %s", args)
|
|
|
|
# Prepare dataset
|
|
numpy_data = np.concatenate(
|
|
[
|
|
np.loadtxt(args.data_dir, dtype=np.int64),
|
|
]
|
|
)
|
|
train_tensor_dataset = (torch.from_numpy(numpy_data),)
|
|
train_data = TensorDataset(*train_tensor_dataset)
|
|
train_sampler = RandomSampler(train_data)
|
|
eval_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.batch_size)
|
|
|
|
# Compute head entropy and importance score
|
|
compute_heads_importance(args, model, eval_dataloader)
|
|
|
|
# Try head masking (set heads to zero until the score goes under a threshole)
|
|
# and head pruning (remove masked heads and see the effect on the network)
|
|
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
|
|
head_mask = mask_heads(args, model, eval_dataloader)
|
|
prune_heads(args, model, eval_dataloader, head_mask)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|