346 lines
15 KiB
Python
346 lines
15 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and Microsoft Corporation.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""PyTorch BERT model with Patience-based Early Exit."""
|
|
|
|
import logging
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import CrossEntropyLoss, MSELoss
|
|
|
|
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
|
|
from transformers.models.bert.modeling_bert import (
|
|
BERT_INPUTS_DOCSTRING,
|
|
BERT_START_DOCSTRING,
|
|
BertEncoder,
|
|
BertModel,
|
|
BertPreTrainedModel,
|
|
)
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BertEncoderWithPabee(BertEncoder):
|
|
def adaptive_forward(self, hidden_states, current_layer, attention_mask=None, head_mask=None):
|
|
layer_outputs = self.layer[current_layer](hidden_states, attention_mask, head_mask[current_layer])
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
return hidden_states
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.",
|
|
BERT_START_DOCSTRING,
|
|
)
|
|
class BertModelWithPabee(BertModel):
|
|
"""
|
|
|
|
The model can behave as an encoder (with only self-attention) as well
|
|
as a decoder, in which case a layer of cross-attention is added between
|
|
the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani,
|
|
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
|
|
|
To behave as a decoder the model needs to be initialized with the
|
|
:obj:`is_decoder` argument of the configuration set to :obj:`True`; an
|
|
:obj:`encoder_hidden_states` is expected as an input to the forward pass.
|
|
|
|
.. _`Attention is all you need`:
|
|
https://arxiv.org/abs/1706.03762
|
|
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
self.encoder = BertEncoderWithPabee(config)
|
|
|
|
self.init_weights()
|
|
self.patience = 0
|
|
self.inference_instances_num = 0
|
|
self.inference_layers_num = 0
|
|
|
|
self.regression_threshold = 0
|
|
|
|
def set_regression_threshold(self, threshold):
|
|
self.regression_threshold = threshold
|
|
|
|
def set_patience(self, patience):
|
|
self.patience = patience
|
|
|
|
def reset_stats(self):
|
|
self.inference_instances_num = 0
|
|
self.inference_layers_num = 0
|
|
|
|
def log_stats(self):
|
|
avg_inf_layers = self.inference_layers_num / self.inference_instances_num
|
|
message = (
|
|
f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="
|
|
f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"
|
|
)
|
|
print(message)
|
|
|
|
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
token_type_ids=None,
|
|
position_ids=None,
|
|
head_mask=None,
|
|
inputs_embeds=None,
|
|
encoder_hidden_states=None,
|
|
encoder_attention_mask=None,
|
|
output_dropout=None,
|
|
output_layers=None,
|
|
regression=False,
|
|
):
|
|
r"""
|
|
Return:
|
|
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
|
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
|
|
Sequence of hidden-states at the output of the last layer of the model.
|
|
pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`):
|
|
Last layer hidden-state of the first token of the sequence (classification token)
|
|
further processed by a Linear layer and a Tanh activation function. The Linear
|
|
layer weights are trained from the next sentence prediction (classification)
|
|
objective during pre-training.
|
|
|
|
This output is usually *not* a good summary
|
|
of the semantic content of the input, you're often better with averaging or pooling
|
|
the sequence of hidden-states for the whole input sequence.
|
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
|
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
|
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
|
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
heads.
|
|
"""
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
input_shape = input_ids.size()
|
|
elif inputs_embeds is not None:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones(input_shape, device=device)
|
|
if token_type_ids is None:
|
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
|
|
|
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
|
# ourselves in which case we just need to make it broadcastable to all heads.
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
|
|
|
# If a 2D ou 3D attention mask is provided for the cross-attention
|
|
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
|
if self.config.is_decoder and encoder_hidden_states is not None:
|
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
|
if encoder_attention_mask is None:
|
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
|
else:
|
|
encoder_extended_attention_mask = None
|
|
|
|
# Prepare head mask if needed
|
|
# 1.0 in head_mask indicate we keep the head
|
|
# attention_probs has shape bsz x n_heads x N x N
|
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
|
|
|
embedding_output = self.embeddings(
|
|
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
|
|
)
|
|
encoder_outputs = embedding_output
|
|
|
|
if self.training:
|
|
res = []
|
|
for i in range(self.config.num_hidden_layers):
|
|
encoder_outputs = self.encoder.adaptive_forward(
|
|
encoder_outputs, current_layer=i, attention_mask=extended_attention_mask, head_mask=head_mask
|
|
)
|
|
|
|
pooled_output = self.pooler(encoder_outputs)
|
|
logits = output_layers[i](output_dropout(pooled_output))
|
|
res.append(logits)
|
|
elif self.patience == 0: # Use all layers for inference
|
|
encoder_outputs = self.encoder(
|
|
embedding_output,
|
|
attention_mask=extended_attention_mask,
|
|
head_mask=head_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_extended_attention_mask,
|
|
)
|
|
pooled_output = self.pooler(encoder_outputs[0])
|
|
res = [output_layers[self.config.num_hidden_layers - 1](pooled_output)]
|
|
else:
|
|
patient_counter = 0
|
|
patient_result = None
|
|
calculated_layer_num = 0
|
|
for i in range(self.config.num_hidden_layers):
|
|
calculated_layer_num += 1
|
|
encoder_outputs = self.encoder.adaptive_forward(
|
|
encoder_outputs, current_layer=i, attention_mask=extended_attention_mask, head_mask=head_mask
|
|
)
|
|
|
|
pooled_output = self.pooler(encoder_outputs)
|
|
logits = output_layers[i](pooled_output)
|
|
if regression:
|
|
labels = logits.detach()
|
|
if patient_result is not None:
|
|
patient_labels = patient_result.detach()
|
|
if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold:
|
|
patient_counter += 1
|
|
else:
|
|
patient_counter = 0
|
|
else:
|
|
labels = logits.detach().argmax(dim=1)
|
|
if patient_result is not None:
|
|
patient_labels = patient_result.detach().argmax(dim=1)
|
|
if (patient_result is not None) and torch.all(labels.eq(patient_labels)):
|
|
patient_counter += 1
|
|
else:
|
|
patient_counter = 0
|
|
|
|
patient_result = logits
|
|
if patient_counter == self.patience:
|
|
break
|
|
res = [patient_result]
|
|
self.inference_layers_num += calculated_layer_num
|
|
self.inference_instances_num += 1
|
|
|
|
return res
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of
|
|
the pooled output) e.g. for GLUE tasks. """,
|
|
BERT_START_DOCSTRING,
|
|
)
|
|
class BertForSequenceClassificationWithPabee(BertPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.bert = BertModelWithPabee(config)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
self.classifiers = nn.ModuleList(
|
|
[nn.Linear(config.hidden_size, self.config.num_labels) for _ in range(config.num_hidden_layers)]
|
|
)
|
|
|
|
self.init_weights()
|
|
|
|
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
token_type_ids=None,
|
|
position_ids=None,
|
|
head_mask=None,
|
|
inputs_embeds=None,
|
|
labels=None,
|
|
):
|
|
r"""
|
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
|
Labels for computing the sequence classification/regression loss.
|
|
Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
|
|
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
|
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
|
|
Returns:
|
|
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
|
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
|
|
Classification (or regression if config.num_labels==1) loss.
|
|
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
|
|
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
|
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
|
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
|
|
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
heads.
|
|
|
|
Examples::
|
|
|
|
from transformers import BertTokenizer, BertForSequenceClassification
|
|
from pabee import BertForSequenceClassificationWithPabee
|
|
from torch import nn
|
|
import torch
|
|
|
|
tokenizer = BertTokenizer.from_pretrained('google-bert/bert-base-uncased')
|
|
model = BertForSequenceClassificationWithPabee.from_pretrained('google-bert/bert-base-uncased')
|
|
|
|
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
|
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
|
|
outputs = model(input_ids, labels=labels)
|
|
|
|
loss, logits = outputs[:2]
|
|
|
|
"""
|
|
|
|
logits = self.bert(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_dropout=self.dropout,
|
|
output_layers=self.classifiers,
|
|
regression=self.num_labels == 1,
|
|
)
|
|
|
|
outputs = (logits[-1],)
|
|
|
|
if labels is not None:
|
|
total_loss = None
|
|
total_weights = 0
|
|
for ix, logits_item in enumerate(logits):
|
|
if self.num_labels == 1:
|
|
# We are doing regression
|
|
loss_fct = MSELoss()
|
|
loss = loss_fct(logits_item.view(-1), labels.view(-1))
|
|
else:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits_item.view(-1, self.num_labels), labels.view(-1))
|
|
if total_loss is None:
|
|
total_loss = loss
|
|
else:
|
|
total_loss += loss * (ix + 1)
|
|
total_weights += ix + 1
|
|
outputs = (total_loss / total_weights,) + outputs
|
|
|
|
return outputs
|