558 lines
18 KiB
Markdown
558 lines
18 KiB
Markdown
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
# Token classification
|
|
|
|
[[open-in-colab]]
|
|
|
|
<Youtube id="wVHdVlPScxA"/>
|
|
|
|
Token classification assigns a label to individual tokens in a sentence. One of the most common token classification tasks is Named Entity Recognition (NER). NER attempts to find a label for each entity in a sentence, such as a person, location, or organization.
|
|
|
|
This guide will show you how to:
|
|
|
|
1. Finetune [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on the [WNUT 17](https://huggingface.co/datasets/wnut_17) dataset to detect new entities.
|
|
2. Use your finetuned model for inference.
|
|
|
|
<Tip>
|
|
|
|
To see all architectures and checkpoints compatible with this task, we recommend checking the [task-page](https://huggingface.co/tasks/token-classification).
|
|
|
|
</Tip>
|
|
|
|
Before you begin, make sure you have all the necessary libraries installed:
|
|
|
|
```bash
|
|
pip install transformers datasets evaluate seqeval
|
|
```
|
|
|
|
We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login:
|
|
|
|
```py
|
|
>>> from huggingface_hub import notebook_login
|
|
|
|
>>> notebook_login()
|
|
```
|
|
|
|
## Load WNUT 17 dataset
|
|
|
|
Start by loading the WNUT 17 dataset from the 🤗 Datasets library:
|
|
|
|
```py
|
|
>>> from datasets import load_dataset
|
|
|
|
>>> wnut = load_dataset("wnut_17")
|
|
```
|
|
|
|
Then take a look at an example:
|
|
|
|
```py
|
|
>>> wnut["train"][0]
|
|
{'id': '0',
|
|
'ner_tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
'tokens': ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.']
|
|
}
|
|
```
|
|
|
|
Each number in `ner_tags` represents an entity. Convert the numbers to their label names to find out what the entities are:
|
|
|
|
```py
|
|
>>> label_list = wnut["train"].features[f"ner_tags"].feature.names
|
|
>>> label_list
|
|
[
|
|
"O",
|
|
"B-corporation",
|
|
"I-corporation",
|
|
"B-creative-work",
|
|
"I-creative-work",
|
|
"B-group",
|
|
"I-group",
|
|
"B-location",
|
|
"I-location",
|
|
"B-person",
|
|
"I-person",
|
|
"B-product",
|
|
"I-product",
|
|
]
|
|
```
|
|
|
|
The letter that prefixes each `ner_tag` indicates the token position of the entity:
|
|
|
|
- `B-` indicates the beginning of an entity.
|
|
- `I-` indicates a token is contained inside the same entity (for example, the `State` token is a part of an entity like
|
|
`Empire State Building`).
|
|
- `0` indicates the token doesn't correspond to any entity.
|
|
|
|
## Preprocess
|
|
|
|
<Youtube id="iY2AZYdZAr0"/>
|
|
|
|
The next step is to load a DistilBERT tokenizer to preprocess the `tokens` field:
|
|
|
|
```py
|
|
>>> from transformers import AutoTokenizer
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
|
|
```
|
|
|
|
As you saw in the example `tokens` field above, it looks like the input has already been tokenized. But the input actually hasn't been tokenized yet and you'll need to set `is_split_into_words=True` to tokenize the words into subwords. For example:
|
|
|
|
```py
|
|
>>> example = wnut["train"][0]
|
|
>>> tokenized_input = tokenizer(example["tokens"], is_split_into_words=True)
|
|
>>> tokens = tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"])
|
|
>>> tokens
|
|
['[CLS]', '@', 'paul', '##walk', 'it', "'", 's', 'the', 'view', 'from', 'where', 'i', "'", 'm', 'living', 'for', 'two', 'weeks', '.', 'empire', 'state', 'building', '=', 'es', '##b', '.', 'pretty', 'bad', 'storm', 'here', 'last', 'evening', '.', '[SEP]']
|
|
```
|
|
|
|
However, this adds some special tokens `[CLS]` and `[SEP]` and the subword tokenization creates a mismatch between the input and labels. A single word corresponding to a single label may now be split into two subwords. You'll need to realign the tokens and labels by:
|
|
|
|
1. Mapping all tokens to their corresponding word with the [`word_ids`](https://huggingface.co/docs/transformers/main_classes/tokenizer#transformers.BatchEncoding.word_ids) method.
|
|
2. Assigning the label `-100` to the special tokens `[CLS]` and `[SEP]` so they're ignored by the PyTorch loss function (see [CrossEntropyLoss](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html)).
|
|
3. Only labeling the first token of a given word. Assign `-100` to other subtokens from the same word.
|
|
|
|
Here is how you can create a function to realign the tokens and labels, and truncate sequences to be no longer than DistilBERT's maximum input length:
|
|
|
|
```py
|
|
>>> def tokenize_and_align_labels(examples):
|
|
... tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True)
|
|
|
|
... labels = []
|
|
... for i, label in enumerate(examples[f"ner_tags"]):
|
|
... word_ids = tokenized_inputs.word_ids(batch_index=i) # Map tokens to their respective word.
|
|
... previous_word_idx = None
|
|
... label_ids = []
|
|
... for word_idx in word_ids: # Set the special tokens to -100.
|
|
... if word_idx is None:
|
|
... label_ids.append(-100)
|
|
... elif word_idx != previous_word_idx: # Only label the first token of a given word.
|
|
... label_ids.append(label[word_idx])
|
|
... else:
|
|
... label_ids.append(-100)
|
|
... previous_word_idx = word_idx
|
|
... labels.append(label_ids)
|
|
|
|
... tokenized_inputs["labels"] = labels
|
|
... return tokenized_inputs
|
|
```
|
|
|
|
To apply the preprocessing function over the entire dataset, use 🤗 Datasets [`~datasets.Dataset.map`] function. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once:
|
|
|
|
```py
|
|
>>> tokenized_wnut = wnut.map(tokenize_and_align_labels, batched=True)
|
|
```
|
|
|
|
Now create a batch of examples using [`DataCollatorWithPadding`]. It's more efficient to *dynamically pad* the sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximum length.
|
|
|
|
<frameworkcontent>
|
|
<pt>
|
|
```py
|
|
>>> from transformers import DataCollatorForTokenClassification
|
|
|
|
>>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
|
|
```
|
|
</pt>
|
|
<tf>
|
|
```py
|
|
>>> from transformers import DataCollatorForTokenClassification
|
|
|
|
>>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="tf")
|
|
```
|
|
</tf>
|
|
</frameworkcontent>
|
|
|
|
## Evaluate
|
|
|
|
Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) framework (see the 🤗 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric). Seqeval actually produces several scores: precision, recall, F1, and accuracy.
|
|
|
|
```py
|
|
>>> import evaluate
|
|
|
|
>>> seqeval = evaluate.load("seqeval")
|
|
```
|
|
|
|
Get the NER labels first, and then create a function that passes your true predictions and true labels to [`~evaluate.EvaluationModule.compute`] to calculate the scores:
|
|
|
|
```py
|
|
>>> import numpy as np
|
|
|
|
>>> labels = [label_list[i] for i in example[f"ner_tags"]]
|
|
|
|
|
|
>>> def compute_metrics(p):
|
|
... predictions, labels = p
|
|
... predictions = np.argmax(predictions, axis=2)
|
|
|
|
... true_predictions = [
|
|
... [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
|
|
... for prediction, label in zip(predictions, labels)
|
|
... ]
|
|
... true_labels = [
|
|
... [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
|
|
... for prediction, label in zip(predictions, labels)
|
|
... ]
|
|
|
|
... results = seqeval.compute(predictions=true_predictions, references=true_labels)
|
|
... return {
|
|
... "precision": results["overall_precision"],
|
|
... "recall": results["overall_recall"],
|
|
... "f1": results["overall_f1"],
|
|
... "accuracy": results["overall_accuracy"],
|
|
... }
|
|
```
|
|
|
|
Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training.
|
|
|
|
## Train
|
|
|
|
Before you start training your model, create a map of the expected ids to their labels with `id2label` and `label2id`:
|
|
|
|
```py
|
|
>>> id2label = {
|
|
... 0: "O",
|
|
... 1: "B-corporation",
|
|
... 2: "I-corporation",
|
|
... 3: "B-creative-work",
|
|
... 4: "I-creative-work",
|
|
... 5: "B-group",
|
|
... 6: "I-group",
|
|
... 7: "B-location",
|
|
... 8: "I-location",
|
|
... 9: "B-person",
|
|
... 10: "I-person",
|
|
... 11: "B-product",
|
|
... 12: "I-product",
|
|
... }
|
|
>>> label2id = {
|
|
... "O": 0,
|
|
... "B-corporation": 1,
|
|
... "I-corporation": 2,
|
|
... "B-creative-work": 3,
|
|
... "I-creative-work": 4,
|
|
... "B-group": 5,
|
|
... "I-group": 6,
|
|
... "B-location": 7,
|
|
... "I-location": 8,
|
|
... "B-person": 9,
|
|
... "I-person": 10,
|
|
... "B-product": 11,
|
|
... "I-product": 12,
|
|
... }
|
|
```
|
|
|
|
<frameworkcontent>
|
|
<pt>
|
|
<Tip>
|
|
|
|
If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)!
|
|
|
|
</Tip>
|
|
|
|
You're ready to start training your model now! Load DistilBERT with [`AutoModelForTokenClassification`] along with the number of expected labels, and the label mappings:
|
|
|
|
```py
|
|
>>> from transformers import AutoModelForTokenClassification, TrainingArguments, Trainer
|
|
|
|
>>> model = AutoModelForTokenClassification.from_pretrained(
|
|
... "distilbert/distilbert-base-uncased", num_labels=13, id2label=id2label, label2id=label2id
|
|
... )
|
|
```
|
|
|
|
At this point, only three steps remain:
|
|
|
|
1. Define your training hyperparameters in [`TrainingArguments`]. The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the seqeval scores and save the training checkpoint.
|
|
2. Pass the training arguments to [`Trainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function.
|
|
3. Call [`~Trainer.train`] to finetune your model.
|
|
|
|
```py
|
|
>>> training_args = TrainingArguments(
|
|
... output_dir="my_awesome_wnut_model",
|
|
... learning_rate=2e-5,
|
|
... per_device_train_batch_size=16,
|
|
... per_device_eval_batch_size=16,
|
|
... num_train_epochs=2,
|
|
... weight_decay=0.01,
|
|
... eval_strategy="epoch",
|
|
... save_strategy="epoch",
|
|
... load_best_model_at_end=True,
|
|
... push_to_hub=True,
|
|
... )
|
|
|
|
>>> trainer = Trainer(
|
|
... model=model,
|
|
... args=training_args,
|
|
... train_dataset=tokenized_wnut["train"],
|
|
... eval_dataset=tokenized_wnut["test"],
|
|
... tokenizer=tokenizer,
|
|
... data_collator=data_collator,
|
|
... compute_metrics=compute_metrics,
|
|
... )
|
|
|
|
>>> trainer.train()
|
|
```
|
|
|
|
Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model:
|
|
|
|
```py
|
|
>>> trainer.push_to_hub()
|
|
```
|
|
</pt>
|
|
<tf>
|
|
<Tip>
|
|
|
|
If you aren't familiar with finetuning a model with Keras, take a look at the basic tutorial [here](../training#train-a-tensorflow-model-with-keras)!
|
|
|
|
</Tip>
|
|
To finetune a model in TensorFlow, start by setting up an optimizer function, learning rate schedule, and some training hyperparameters:
|
|
|
|
```py
|
|
>>> from transformers import create_optimizer
|
|
|
|
>>> batch_size = 16
|
|
>>> num_train_epochs = 3
|
|
>>> num_train_steps = (len(tokenized_wnut["train"]) // batch_size) * num_train_epochs
|
|
>>> optimizer, lr_schedule = create_optimizer(
|
|
... init_lr=2e-5,
|
|
... num_train_steps=num_train_steps,
|
|
... weight_decay_rate=0.01,
|
|
... num_warmup_steps=0,
|
|
... )
|
|
```
|
|
|
|
Then you can load DistilBERT with [`TFAutoModelForTokenClassification`] along with the number of expected labels, and the label mappings:
|
|
|
|
```py
|
|
>>> from transformers import TFAutoModelForTokenClassification
|
|
|
|
>>> model = TFAutoModelForTokenClassification.from_pretrained(
|
|
... "distilbert/distilbert-base-uncased", num_labels=13, id2label=id2label, label2id=label2id
|
|
... )
|
|
```
|
|
|
|
Convert your datasets to the `tf.data.Dataset` format with [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
|
|
|
|
```py
|
|
>>> tf_train_set = model.prepare_tf_dataset(
|
|
... tokenized_wnut["train"],
|
|
... shuffle=True,
|
|
... batch_size=16,
|
|
... collate_fn=data_collator,
|
|
... )
|
|
|
|
>>> tf_validation_set = model.prepare_tf_dataset(
|
|
... tokenized_wnut["validation"],
|
|
... shuffle=False,
|
|
... batch_size=16,
|
|
... collate_fn=data_collator,
|
|
... )
|
|
```
|
|
|
|
Configure the model for training with [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). Note that Transformers models all have a default task-relevant loss function, so you don't need to specify one unless you want to:
|
|
|
|
```py
|
|
>>> import tensorflow as tf
|
|
|
|
>>> model.compile(optimizer=optimizer) # No loss argument!
|
|
```
|
|
|
|
The last two things to setup before you start training is to compute the seqeval scores from the predictions, and provide a way to push your model to the Hub. Both are done by using [Keras callbacks](../main_classes/keras_callbacks).
|
|
|
|
Pass your `compute_metrics` function to [`~transformers.KerasMetricCallback`]:
|
|
|
|
```py
|
|
>>> from transformers.keras_callbacks import KerasMetricCallback
|
|
|
|
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
|
|
```
|
|
|
|
Specify where to push your model and tokenizer in the [`~transformers.PushToHubCallback`]:
|
|
|
|
```py
|
|
>>> from transformers.keras_callbacks import PushToHubCallback
|
|
|
|
>>> push_to_hub_callback = PushToHubCallback(
|
|
... output_dir="my_awesome_wnut_model",
|
|
... tokenizer=tokenizer,
|
|
... )
|
|
```
|
|
|
|
Then bundle your callbacks together:
|
|
|
|
```py
|
|
>>> callbacks = [metric_callback, push_to_hub_callback]
|
|
```
|
|
|
|
Finally, you're ready to start training your model! Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) with your training and validation datasets, the number of epochs, and your callbacks to finetune the model:
|
|
|
|
```py
|
|
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3, callbacks=callbacks)
|
|
```
|
|
|
|
Once training is completed, your model is automatically uploaded to the Hub so everyone can use it!
|
|
</tf>
|
|
</frameworkcontent>
|
|
|
|
<Tip>
|
|
|
|
For a more in-depth example of how to finetune a model for token classification, take a look at the corresponding
|
|
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)
|
|
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
|
|
|
|
</Tip>
|
|
|
|
## Inference
|
|
|
|
Great, now that you've finetuned a model, you can use it for inference!
|
|
|
|
Grab some text you'd like to run inference on:
|
|
|
|
```py
|
|
>>> text = "The Golden State Warriors are an American professional basketball team based in San Francisco."
|
|
```
|
|
|
|
The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for NER with your model, and pass your text to it:
|
|
|
|
```py
|
|
>>> from transformers import pipeline
|
|
|
|
>>> classifier = pipeline("ner", model="stevhliu/my_awesome_wnut_model")
|
|
>>> classifier(text)
|
|
[{'entity': 'B-location',
|
|
'score': 0.42658573,
|
|
'index': 2,
|
|
'word': 'golden',
|
|
'start': 4,
|
|
'end': 10},
|
|
{'entity': 'I-location',
|
|
'score': 0.35856336,
|
|
'index': 3,
|
|
'word': 'state',
|
|
'start': 11,
|
|
'end': 16},
|
|
{'entity': 'B-group',
|
|
'score': 0.3064001,
|
|
'index': 4,
|
|
'word': 'warriors',
|
|
'start': 17,
|
|
'end': 25},
|
|
{'entity': 'B-location',
|
|
'score': 0.65523505,
|
|
'index': 13,
|
|
'word': 'san',
|
|
'start': 80,
|
|
'end': 83},
|
|
{'entity': 'B-location',
|
|
'score': 0.4668663,
|
|
'index': 14,
|
|
'word': 'francisco',
|
|
'start': 84,
|
|
'end': 93}]
|
|
```
|
|
|
|
You can also manually replicate the results of the `pipeline` if you'd like:
|
|
|
|
<frameworkcontent>
|
|
<pt>
|
|
Tokenize the text and return PyTorch tensors:
|
|
|
|
```py
|
|
>>> from transformers import AutoTokenizer
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_wnut_model")
|
|
>>> inputs = tokenizer(text, return_tensors="pt")
|
|
```
|
|
|
|
Pass your inputs to the model and return the `logits`:
|
|
|
|
```py
|
|
>>> from transformers import AutoModelForTokenClassification
|
|
|
|
>>> model = AutoModelForTokenClassification.from_pretrained("stevhliu/my_awesome_wnut_model")
|
|
>>> with torch.no_grad():
|
|
... logits = model(**inputs).logits
|
|
```
|
|
|
|
Get the class with the highest probability, and use the model's `id2label` mapping to convert it to a text label:
|
|
|
|
```py
|
|
>>> predictions = torch.argmax(logits, dim=2)
|
|
>>> predicted_token_class = [model.config.id2label[t.item()] for t in predictions[0]]
|
|
>>> predicted_token_class
|
|
['O',
|
|
'O',
|
|
'B-location',
|
|
'I-location',
|
|
'B-group',
|
|
'O',
|
|
'O',
|
|
'O',
|
|
'O',
|
|
'O',
|
|
'O',
|
|
'O',
|
|
'O',
|
|
'B-location',
|
|
'B-location',
|
|
'O',
|
|
'O']
|
|
```
|
|
</pt>
|
|
<tf>
|
|
Tokenize the text and return TensorFlow tensors:
|
|
|
|
```py
|
|
>>> from transformers import AutoTokenizer
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_wnut_model")
|
|
>>> inputs = tokenizer(text, return_tensors="tf")
|
|
```
|
|
|
|
Pass your inputs to the model and return the `logits`:
|
|
|
|
```py
|
|
>>> from transformers import TFAutoModelForTokenClassification
|
|
|
|
>>> model = TFAutoModelForTokenClassification.from_pretrained("stevhliu/my_awesome_wnut_model")
|
|
>>> logits = model(**inputs).logits
|
|
```
|
|
|
|
Get the class with the highest probability, and use the model's `id2label` mapping to convert it to a text label:
|
|
|
|
```py
|
|
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
|
|
>>> predicted_token_class = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
|
|
>>> predicted_token_class
|
|
['O',
|
|
'O',
|
|
'B-location',
|
|
'I-location',
|
|
'B-group',
|
|
'O',
|
|
'O',
|
|
'O',
|
|
'O',
|
|
'O',
|
|
'O',
|
|
'O',
|
|
'O',
|
|
'B-location',
|
|
'B-location',
|
|
'O',
|
|
'O']
|
|
```
|
|
</tf>
|
|
</frameworkcontent>
|