4.9 KiB
Swin Transformer
Overview
The Swin Transformer was proposed in Swin Transformer: Hierarchical Vision Transformer using Shifted Windows by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
The abstract from the paper is the following:
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with \bold{S}hifted \bold{win}dows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures.
Swin Transformer architecture. Taken from the original paper.
This model was contributed by novice03. The Tensorflow version of this model was contributed by amyeroberts. The original code can be found here.
Usage tips
- Swin pads the inputs supporting any input height and width (if divisible by
32
). - Swin can be used as a backbone. When
output_hidden_states = True
, it will output bothhidden_states
andreshaped_hidden_states
. Thereshaped_hidden_states
have a shape of(batch, num_channels, height, width)
rather than(batch_size, sequence_length, num_channels)
.
Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Swin Transformer.
- [
SwinForImageClassification
] is supported by this example script and notebook. - See also: Image classification task guide
Besides that:
- [
SwinForMaskedImageModeling
] is supported by this example script.
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
SwinConfig
autodoc SwinConfig
SwinModel
autodoc SwinModel - forward
SwinForMaskedImageModeling
autodoc SwinForMaskedImageModeling - forward
SwinForImageClassification
autodoc transformers.SwinForImageClassification - forward
TFSwinModel
autodoc TFSwinModel - call
TFSwinForMaskedImageModeling
autodoc TFSwinForMaskedImageModeling - call
TFSwinForImageClassification
autodoc transformers.TFSwinForImageClassification - call