4.8 KiB
RoBERTa-PreLayerNorm
Overview
The RoBERTa-PreLayerNorm model was proposed in fairseq: A Fast, Extensible Toolkit for Sequence Modeling by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
It is identical to using the --encoder-normalize-before
flag in fairseq.
The abstract from the paper is the following:
fairseq is an open-source sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling, and other text generation tasks. The toolkit is based on PyTorch and supports distributed training across multiple GPUs and machines. We also support fast mixed-precision training and inference on modern GPUs.
This model was contributed by andreasmaden. The original code can be found here.
Usage tips
- The implementation is the same as Roberta except instead of using Add and Norm it does Norm and Add. Add and Norm refers to the Addition and LayerNormalization as described in Attention Is All You Need.
- This is identical to using the
--encoder-normalize-before
flag in fairseq.
Resources
- Text classification task guide
- Token classification task guide
- Question answering task guide
- Causal language modeling task guide
- Masked language modeling task guide
- Multiple choice task guide
RobertaPreLayerNormConfig
autodoc RobertaPreLayerNormConfig
RobertaPreLayerNormModel
autodoc RobertaPreLayerNormModel - forward
RobertaPreLayerNormForCausalLM
autodoc RobertaPreLayerNormForCausalLM - forward
RobertaPreLayerNormForMaskedLM
autodoc RobertaPreLayerNormForMaskedLM - forward
RobertaPreLayerNormForSequenceClassification
autodoc RobertaPreLayerNormForSequenceClassification - forward
RobertaPreLayerNormForMultipleChoice
autodoc RobertaPreLayerNormForMultipleChoice - forward
RobertaPreLayerNormForTokenClassification
autodoc RobertaPreLayerNormForTokenClassification - forward
RobertaPreLayerNormForQuestionAnswering
autodoc RobertaPreLayerNormForQuestionAnswering - forward
TFRobertaPreLayerNormModel
autodoc TFRobertaPreLayerNormModel - call
TFRobertaPreLayerNormForCausalLM
autodoc TFRobertaPreLayerNormForCausalLM - call
TFRobertaPreLayerNormForMaskedLM
autodoc TFRobertaPreLayerNormForMaskedLM - call
TFRobertaPreLayerNormForSequenceClassification
autodoc TFRobertaPreLayerNormForSequenceClassification - call
TFRobertaPreLayerNormForMultipleChoice
autodoc TFRobertaPreLayerNormForMultipleChoice - call
TFRobertaPreLayerNormForTokenClassification
autodoc TFRobertaPreLayerNormForTokenClassification - call
TFRobertaPreLayerNormForQuestionAnswering
autodoc TFRobertaPreLayerNormForQuestionAnswering - call
FlaxRobertaPreLayerNormModel
autodoc FlaxRobertaPreLayerNormModel - call
FlaxRobertaPreLayerNormForCausalLM
autodoc FlaxRobertaPreLayerNormForCausalLM - call
FlaxRobertaPreLayerNormForMaskedLM
autodoc FlaxRobertaPreLayerNormForMaskedLM - call
FlaxRobertaPreLayerNormForSequenceClassification
autodoc FlaxRobertaPreLayerNormForSequenceClassification - call
FlaxRobertaPreLayerNormForMultipleChoice
autodoc FlaxRobertaPreLayerNormForMultipleChoice - call
FlaxRobertaPreLayerNormForTokenClassification
autodoc FlaxRobertaPreLayerNormForTokenClassification - call
FlaxRobertaPreLayerNormForQuestionAnswering
autodoc FlaxRobertaPreLayerNormForQuestionAnswering - call