transformers/docs/source/en/model_doc/ibert.md

84 lines
3.4 KiB
Markdown

<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# I-BERT
## Overview
The I-BERT model was proposed in [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by
Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney and Kurt Keutzer. It's a quantized version of RoBERTa running
inference up to four times faster.
The abstract from the paper is the following:
*Transformer based models, like BERT and RoBERTa, have achieved state-of-the-art results in many Natural Language
Processing tasks. However, their memory footprint, inference latency, and power consumption are prohibitive for
efficient inference at the edge, and even at the data center. While quantization can be a viable solution for this,
previous work on quantizing Transformer based models use floating-point arithmetic during inference, which cannot
efficiently utilize integer-only logical units such as the recent Turing Tensor Cores, or traditional integer-only ARM
processors. In this work, we propose I-BERT, a novel quantization scheme for Transformer based models that quantizes
the entire inference with integer-only arithmetic. Based on lightweight integer-only approximation methods for
nonlinear operations, e.g., GELU, Softmax, and Layer Normalization, I-BERT performs an end-to-end integer-only BERT
inference without any floating point calculation. We evaluate our approach on GLUE downstream tasks using
RoBERTa-Base/Large. We show that for both cases, I-BERT achieves similar (and slightly higher) accuracy as compared to
the full-precision baseline. Furthermore, our preliminary implementation of I-BERT shows a speedup of 2.4 - 4.0x for
INT8 inference on a T4 GPU system as compared to FP32 inference. The framework has been developed in PyTorch and has
been open-sourced.*
This model was contributed by [kssteven](https://huggingface.co/kssteven). The original code can be found [here](https://github.com/kssteven418/I-BERT).
## Resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/masked_language_modeling)
## IBertConfig
[[autodoc]] IBertConfig
## IBertModel
[[autodoc]] IBertModel
- forward
## IBertForMaskedLM
[[autodoc]] IBertForMaskedLM
- forward
## IBertForSequenceClassification
[[autodoc]] IBertForSequenceClassification
- forward
## IBertForMultipleChoice
[[autodoc]] IBertForMultipleChoice
- forward
## IBertForTokenClassification
[[autodoc]] IBertForTokenClassification
- forward
## IBertForQuestionAnswering
[[autodoc]] IBertForQuestionAnswering
- forward