200 lines
6.4 KiB
Python
200 lines
6.4 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
|
|
# hack it in for now:
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
|
|
git_repo_path = Path(__file__).resolve().parents[3] / "src"
|
|
sys.path.insert(1, str(git_repo_path))
|
|
|
|
import dataclasses # noqa
|
|
import io # noqa
|
|
import itertools # noqa
|
|
import json # noqa
|
|
import os # noqa
|
|
import unittest # noqa
|
|
from copy import deepcopy # noqa
|
|
|
|
from parameterized import parameterized # noqa
|
|
from transformers import TrainingArguments, is_torch_available # noqa
|
|
from transformers.integrations.deepspeed import is_deepspeed_available # noqa
|
|
from transformers.file_utils import WEIGHTS_NAME # noqa
|
|
from transformers.testing_utils import ( # noqa
|
|
CaptureLogger,
|
|
ExtendSysPath,
|
|
TestCasePlus,
|
|
execute_subprocess_async,
|
|
get_gpu_count,
|
|
mockenv_context,
|
|
require_deepspeed,
|
|
require_torch_gpu,
|
|
require_torch_multi_gpu,
|
|
slow,
|
|
)
|
|
from transformers.trainer_utils import set_seed # noqa
|
|
|
|
|
|
set_seed(42)
|
|
|
|
models = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"}
|
|
|
|
ZERO2 = "zero2"
|
|
ZERO3 = "zero3"
|
|
stages = [ZERO2, ZERO3]
|
|
|
|
|
|
def custom_name_func(func, param_num, param):
|
|
# customize the test name generator function as we want both params to appear in the sub-test
|
|
# name, as by default it shows only the first param
|
|
param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
|
|
return f"{func.__name__}_{param_based_name}"
|
|
|
|
|
|
# Cartesian-product of zero stages with models to test
|
|
params = list(itertools.product(stages, models.keys()))
|
|
|
|
|
|
@slow
|
|
@require_deepspeed
|
|
@require_torch_gpu
|
|
class TestDeepSpeedWav2Vec2(TestCasePlus):
|
|
@parameterized.expand(params, name_func=custom_name_func)
|
|
def test_fp32_non_distributed(self, stage, model):
|
|
self.run_and_check(
|
|
stage=stage,
|
|
model=model,
|
|
distributed=False,
|
|
fp16=False,
|
|
)
|
|
|
|
@require_torch_multi_gpu
|
|
@parameterized.expand(params, name_func=custom_name_func)
|
|
def test_fp32_distributed(self, stage, model):
|
|
self.run_and_check(
|
|
stage=stage,
|
|
model=model,
|
|
distributed=True,
|
|
fp16=False,
|
|
)
|
|
|
|
@parameterized.expand(params, name_func=custom_name_func)
|
|
def test_fp16_non_distributed(self, stage, model):
|
|
self.run_and_check(
|
|
stage=stage,
|
|
model=model,
|
|
distributed=False,
|
|
fp16=True,
|
|
)
|
|
|
|
@require_torch_multi_gpu
|
|
@parameterized.expand(params, name_func=custom_name_func)
|
|
def test_fp16_distributed(self, stage, model):
|
|
self.run_and_check(
|
|
stage=stage,
|
|
model=model,
|
|
distributed=True,
|
|
fp16=True,
|
|
)
|
|
|
|
def do_checks(self, output_dir):
|
|
# XXX: run_asr is premature and doesn't save any results
|
|
# so all we check for now is that the process didn't fail
|
|
pass
|
|
|
|
# XXX: need to do better validation beyond just that the run was successful
|
|
def run_and_check(
|
|
self,
|
|
stage: str,
|
|
model: str,
|
|
eval_steps: int = 10,
|
|
distributed: bool = True,
|
|
quality_checks: bool = True,
|
|
fp16: bool = True,
|
|
):
|
|
model_name = models[model]
|
|
|
|
output_dir = self.run_trainer(
|
|
stage=stage,
|
|
model_name=model_name,
|
|
eval_steps=eval_steps,
|
|
num_train_epochs=1,
|
|
distributed=distributed,
|
|
fp16=fp16,
|
|
)
|
|
|
|
self.do_checks(output_dir)
|
|
|
|
return output_dir
|
|
|
|
def run_trainer(
|
|
self,
|
|
stage: str,
|
|
model_name: str,
|
|
eval_steps: int = 10,
|
|
num_train_epochs: int = 1,
|
|
distributed: bool = True,
|
|
fp16: bool = True,
|
|
):
|
|
output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)
|
|
args = f"""
|
|
--model_name_or_path {model_name}
|
|
--dataset_name hf-internal-testing/librispeech_asr_dummy
|
|
--dataset_config_name clean
|
|
--train_split_name validation
|
|
--validation_split_name validation
|
|
--output_dir {output_dir}
|
|
--num_train_epochs {str(num_train_epochs)}
|
|
--per_device_train_batch_size 2
|
|
--per_device_eval_batch_size 2
|
|
--evaluation_strategy steps
|
|
--learning_rate 5e-4
|
|
--warmup_steps 8
|
|
--orthography timit
|
|
--preprocessing_num_workers 1
|
|
--group_by_length
|
|
--freeze_feature_extractor
|
|
--report_to none
|
|
--save_steps 0
|
|
--eval_steps {eval_steps}
|
|
--report_to none
|
|
""".split()
|
|
|
|
if fp16:
|
|
args.extend(["--fp16"])
|
|
|
|
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
|
|
# hence the separate config files
|
|
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split()
|
|
script = [f"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"]
|
|
launcher = self.get_launcher(distributed)
|
|
|
|
cmd = launcher + script + args + ds_args
|
|
# keep for quick debug
|
|
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
|
|
execute_subprocess_async(cmd, env=self.get_env())
|
|
|
|
return output_dir
|
|
|
|
def get_launcher(self, distributed=False):
|
|
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
|
|
# - it won't be able to handle that
|
|
# 2. for now testing with just 2 gpus max (since some quality tests may give different
|
|
# results with mode gpus because we use very little data)
|
|
num_gpus = min(2, get_gpu_count()) if distributed else 1
|
|
return f"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()
|