397 lines
15 KiB
Python
Executable File
397 lines
15 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import logging
|
|
import sys
|
|
from dataclasses import dataclass, field
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
import librosa
|
|
import torch
|
|
from datasets import DatasetDict, load_dataset
|
|
from packaging import version
|
|
from torch import nn
|
|
|
|
from transformers import (
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
Wav2Vec2Config,
|
|
Wav2Vec2FeatureExtractor,
|
|
Wav2Vec2ForPreTraining,
|
|
is_apex_available,
|
|
trainer_utils,
|
|
)
|
|
from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices
|
|
|
|
|
|
if is_apex_available():
|
|
from apex import amp
|
|
|
|
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
|
|
_is_native_amp_available = True
|
|
from torch.cuda.amp import autocast
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
freeze_feature_extractor: Optional[bool] = field(
|
|
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
|
|
)
|
|
verbose_logging: Optional[bool] = field(
|
|
default=False,
|
|
metadata={"help": "Whether to log verbose messages or not."},
|
|
)
|
|
max_gumbel_temperature: Optional[float] = field(
|
|
default=2.0, metadata={"help": "Maximum temperature for gumbel softmax."}
|
|
)
|
|
min_gumbel_temperature: Optional[float] = field(
|
|
default=0.5, metadata={"help": "Minimum temperature for gumbel softmax."}
|
|
)
|
|
gumbel_temperature_decay: Optional[float] = field(
|
|
default=0.999995, metadata={"help": "Decay of gumbel temperature during training."}
|
|
)
|
|
|
|
|
|
def configure_logger(model_args: ModelArguments, training_args: TrainingArguments):
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
logging_level = logging.WARNING
|
|
if model_args.verbose_logging:
|
|
logging_level = logging.DEBUG
|
|
elif trainer_utils.is_main_process(training_args.local_rank):
|
|
logging_level = logging.INFO
|
|
logger.setLevel(logging_level)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
|
|
Using `HfArgumentParser` we can turn this class
|
|
into argparse arguments to be able to specify them on
|
|
the command line.
|
|
"""
|
|
|
|
dataset_name: str = field(
|
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
train_split_name: Optional[str] = field(
|
|
default="train",
|
|
metadata={
|
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
|
},
|
|
)
|
|
validation_split_name: Optional[str] = field(
|
|
default="validation",
|
|
metadata={
|
|
"help": (
|
|
"The name of the validation data set split to use (via the datasets library). Defaults to 'validation'"
|
|
)
|
|
},
|
|
)
|
|
speech_file_column: Optional[str] = field(
|
|
default="file",
|
|
metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
|
)
|
|
validation_split_percentage: Optional[int] = field(
|
|
default=1,
|
|
metadata={
|
|
"help": "The percentage of the train set used as validation set in case there's no validation split"
|
|
},
|
|
)
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
)
|
|
max_duration_in_seconds: Optional[float] = field(
|
|
default=20.0, metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataCollatorForWav2Vec2Pretraining:
|
|
"""
|
|
Data collator that will dynamically pad the inputs received and prepare masked indices
|
|
for self-supervised pretraining.
|
|
|
|
Args:
|
|
model (:class:`~transformers.Wav2Vec2ForPreTraining`):
|
|
The Wav2Vec2 model used for pretraining. The data collator needs to have access
|
|
to config and ``_get_feat_extract_output_lengths`` function for correct padding.
|
|
feature_extractor (:class:`~transformers.Wav2Vec2FeatureExtractor`):
|
|
The processor used for proccessing the data.
|
|
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
|
among:
|
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
|
sequence if provided).
|
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
|
maximum acceptable input length for the model if that argument is not provided.
|
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
|
different lengths).
|
|
max_length (:obj:`int`, `optional`):
|
|
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
|
pad_to_multiple_of (:obj:`int`, `optional`):
|
|
If set will pad the sequence to a multiple of the provided value.
|
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
|
7.5 (Volta).
|
|
"""
|
|
|
|
model: Wav2Vec2ForPreTraining
|
|
feature_extractor: Wav2Vec2FeatureExtractor
|
|
padding: Union[bool, str] = "longest"
|
|
pad_to_multiple_of: Optional[int] = None
|
|
max_length: Optional[int] = None
|
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
|
# reformat list to dict and set to pytorch format
|
|
batch = self.feature_extractor.pad(
|
|
features,
|
|
max_length=self.max_length,
|
|
padding=self.padding,
|
|
pad_to_multiple_of=self.pad_to_multiple_of,
|
|
return_tensors="pt",
|
|
)
|
|
mask_indices_seq_length = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1])
|
|
|
|
batch_size = batch["input_values"].shape[0]
|
|
|
|
# make sure that no loss is computed on padded inputs
|
|
if batch["attention_mask"] is not None:
|
|
# compute real output lengths according to convolution formula
|
|
output_lengths = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to(
|
|
torch.long
|
|
)
|
|
|
|
attention_mask = torch.zeros(
|
|
(batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device
|
|
)
|
|
|
|
# these two operations makes sure that all values
|
|
# before the output lengths indices are attended to
|
|
attention_mask[
|
|
(torch.arange(attention_mask.shape[0], device=batch["input_values"].device), output_lengths - 1)
|
|
] = 1
|
|
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
|
|
|
|
# sample randomly masked indices
|
|
batch["mask_time_indices"] = _compute_mask_indices(
|
|
(batch_size, mask_indices_seq_length),
|
|
self.model.config.mask_time_prob,
|
|
self.model.config.mask_time_length,
|
|
attention_mask=attention_mask,
|
|
min_masks=2,
|
|
)
|
|
|
|
return batch
|
|
|
|
|
|
class Wav2Vec2PreTrainer(Trainer):
|
|
"""
|
|
Subclassed :class:`~transformers.Trainer` for Wav2Vec2-like pretraining. Trainer can decay gumbel softmax temperature during training.
|
|
"""
|
|
|
|
def __init__(self, *args, max_gumbel_temp=1, min_gumbel_temp=0, gumbel_temp_decay=1.0, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.num_update_step = 0
|
|
self.max_gumbel_temp = max_gumbel_temp
|
|
self.min_gumbel_temp = min_gumbel_temp
|
|
self.gumbel_temp_decay = gumbel_temp_decay
|
|
|
|
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
|
|
"""
|
|
Perform a training step on a batch of inputs.
|
|
|
|
Subclass and override to inject custom behavior.
|
|
|
|
Args:
|
|
model (:obj:`nn.Module`):
|
|
The model to train.
|
|
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
|
|
The inputs and targets of the model.
|
|
|
|
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
|
|
argument :obj:`labels`. Check your model's documentation for all accepted arguments.
|
|
|
|
Return:
|
|
:obj:`torch.Tensor`: The tensor with training loss on this batch.
|
|
"""
|
|
|
|
model.train()
|
|
inputs = self._prepare_inputs(inputs)
|
|
|
|
if self.use_amp:
|
|
with autocast():
|
|
loss = self.compute_loss(model, inputs)
|
|
else:
|
|
loss = self.compute_loss(model, inputs)
|
|
|
|
if self.args.n_gpu > 1 or self.deepspeed:
|
|
if model.module.config.ctc_loss_reduction == "mean":
|
|
loss = loss.mean()
|
|
elif model.module.config.ctc_loss_reduction == "sum":
|
|
loss = loss.sum() / (inputs["mask_time_indices"]).sum()
|
|
else:
|
|
raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']")
|
|
|
|
if self.args.gradient_accumulation_steps > 1:
|
|
loss = loss / self.args.gradient_accumulation_steps
|
|
|
|
if self.use_amp:
|
|
self.scaler.scale(loss).backward()
|
|
elif self.use_apex:
|
|
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
|
|
scaled_loss.backward()
|
|
elif self.deepspeed:
|
|
self.deepspeed.backward(loss)
|
|
else:
|
|
loss.backward()
|
|
|
|
self.num_update_step += 1
|
|
# make sure gumbel softmax temperature is decayed
|
|
if self.args.n_gpu > 1 or self.deepspeed:
|
|
model.module.set_gumbel_temperature(
|
|
max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)
|
|
)
|
|
else:
|
|
model.set_gumbel_temperature(
|
|
max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)
|
|
)
|
|
|
|
return loss.detach()
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
configure_logger(model_args, training_args)
|
|
|
|
# Downloading and loading a dataset from the hub.
|
|
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
|
|
|
|
if "validation" not in datasets.keys():
|
|
# make sure only "validation" and "train" keys remain"
|
|
datasets = DatasetDict()
|
|
datasets["validation"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]",
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
datasets["train"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]",
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
else:
|
|
# make sure only "validation" and "train" keys remain"
|
|
datasets = DatasetDict()
|
|
datasets["validation"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split="validation",
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
datasets["train"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=f"{data_args.train_split_name}",
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
|
|
# only normalized-inputs-training is supported
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
|
|
model_args.model_name_or_path, cache_dir=model_args.cache_dir, do_normalize=True
|
|
)
|
|
|
|
def prepare_dataset(batch):
|
|
# check that all files have the correct sampling rate
|
|
batch["speech"], _ = librosa.load(batch[data_args.speech_file_column], sr=feature_extractor.sampling_rate)
|
|
return batch
|
|
|
|
# load audio files into numpy arrays
|
|
vectorized_datasets = datasets.map(
|
|
prepare_dataset, num_proc=data_args.preprocessing_num_workers, remove_columns=datasets["train"].column_names
|
|
)
|
|
|
|
# filter audio files that are too long
|
|
vectorized_datasets = vectorized_datasets.filter(
|
|
lambda data: len(data["speech"]) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
|
|
)
|
|
|
|
def normalize(batch):
|
|
return feature_extractor(batch["speech"], sampling_rate=feature_extractor.sampling_rate)
|
|
|
|
# normalize and transform to `BatchFeatures`
|
|
vectorized_datasets = vectorized_datasets.map(
|
|
normalize,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
remove_columns=vectorized_datasets["train"].column_names,
|
|
)
|
|
|
|
# pretraining is only supported for "newer" stable layer norm architecture
|
|
# apply_spec_augment has to be True, mask_feature_prob has to be 0.0
|
|
config = Wav2Vec2Config.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
gradient_checkpointing=training_args.gradient_checkpointing,
|
|
)
|
|
|
|
if not config.do_stable_layer_norm or config.feat_extract_norm != "layer":
|
|
raise ValueError(
|
|
"PreTraining is only supported for ``config.do_stable_layer_norm=True`` and"
|
|
" ``config.feat_extract_norm='layer'"
|
|
)
|
|
|
|
model = Wav2Vec2ForPreTraining(config)
|
|
|
|
data_collator = DataCollatorForWav2Vec2Pretraining(model=model, feature_extractor=feature_extractor)
|
|
|
|
trainer = Wav2Vec2PreTrainer(
|
|
model=model,
|
|
data_collator=data_collator,
|
|
args=training_args,
|
|
train_dataset=vectorized_datasets["train"],
|
|
eval_dataset=vectorized_datasets["validation"],
|
|
tokenizer=feature_extractor,
|
|
max_gumbel_temp=model_args.max_gumbel_temperature,
|
|
min_gumbel_temp=model_args.min_gumbel_temperature,
|
|
gumbel_temp_decay=model_args.gumbel_temperature_decay,
|
|
)
|
|
trainer.train()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|