transformers/examples/research_projects/wav2vec2/alignment.py

224 lines
8.6 KiB
Python

# Parts of the code are adapted from the snippets provided in the TorchAudio Wav2Vec forced alignment tutorial.
# The full tutorial can be found here: https://pytorch.org/audio/stable/tutorials/forced_alignment_tutorial.html
import argparse
import os
from dataclasses import dataclass
import torch
import torchaudio
from tqdm import tqdm
from transformers import AutoConfig, AutoModelForCTC, AutoProcessor
class Wav2Vec2Aligner:
def __init__(self, model_name, input_wavs_sr, cuda):
self.cuda = cuda
self.config = AutoConfig.from_pretrained(model_name)
self.model = AutoModelForCTC.from_pretrained(model_name)
self.model.eval()
if self.cuda:
self.model.to(device="cuda")
self.processor = AutoProcessor.from_pretrained(model_name)
self.resampler = torchaudio.transforms.Resample(input_wavs_sr, 16_000)
blank_id = 0
vocab = list(self.processor.tokenizer.get_vocab().keys())
for i in range(len(vocab)):
if vocab[i] == "[PAD]" or vocab[i] == "<pad>":
blank_id = i
print("Blank Token id [PAD]/<pad>", blank_id)
self.blank_id = blank_id
def speech_file_to_array_fn(self, wav_path):
speech_array, sampling_rate = torchaudio.load(wav_path)
speech = self.resampler(speech_array).squeeze().numpy()
return speech
def align_single_sample(self, item):
blank_id = self.blank_id
transcript = "|".join(item["sent"].split(" "))
if not os.path.isfile(item["wav_path"]):
print(item["wav_path"], "not found in wavs directory")
speech_array = self.speech_file_to_array_fn(item["wav_path"])
inputs = self.processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True)
if self.cuda:
inputs = inputs.to(device="cuda")
with torch.no_grad():
logits = self.model(inputs.input_values).logits
# get the emission probability at frame level
emissions = torch.log_softmax(logits, dim=-1)
emission = emissions[0].cpu().detach()
# get labels from vocab
labels = ([""] + list(self.processor.tokenizer.get_vocab().keys()))[
:-1
] # logits don't align with the tokenizer's vocab
dictionary = {c: i for i, c in enumerate(labels)}
tokens = []
for c in transcript:
if c in dictionary:
tokens.append(dictionary[c])
def get_trellis(emission, tokens, blank_id=0):
"""
Build a trellis matrix of shape (num_frames + 1, num_tokens + 1)
that represents the probabilities of each source token being at a certain time step
"""
num_frames = emission.size(0)
num_tokens = len(tokens)
# Trellis has extra diemsions for both time axis and tokens.
# The extra dim for tokens represents <SoS> (start-of-sentence)
# The extra dim for time axis is for simplification of the code.
trellis = torch.full((num_frames + 1, num_tokens + 1), -float("inf"))
trellis[:, 0] = 0
for t in range(num_frames):
trellis[t + 1, 1:] = torch.maximum(
# Score for staying at the same token
trellis[t, 1:] + emission[t, blank_id],
# Score for changing to the next token
trellis[t, :-1] + emission[t, tokens],
)
return trellis
trellis = get_trellis(emission, tokens, blank_id)
@dataclass
class Point:
token_index: int
time_index: int
score: float
def backtrack(trellis, emission, tokens, blank_id=0):
"""
Walk backwards from the last (sentence_token, time_step) pair to build the optimal sequence alignment path
"""
# Note:
# j and t are indices for trellis, which has extra dimensions
# for time and tokens at the beginning.
# When referring to time frame index `T` in trellis,
# the corresponding index in emission is `T-1`.
# Similarly, when referring to token index `J` in trellis,
# the corresponding index in transcript is `J-1`.
j = trellis.size(1) - 1
t_start = torch.argmax(trellis[:, j]).item()
path = []
for t in range(t_start, 0, -1):
# 1. Figure out if the current position was stay or change
# Note (again):
# `emission[J-1]` is the emission at time frame `J` of trellis dimension.
# Score for token staying the same from time frame J-1 to T.
stayed = trellis[t - 1, j] + emission[t - 1, blank_id]
# Score for token changing from C-1 at T-1 to J at T.
changed = trellis[t - 1, j - 1] + emission[t - 1, tokens[j - 1]]
# 2. Store the path with frame-wise probability.
prob = emission[t - 1, tokens[j - 1] if changed > stayed else 0].exp().item()
# Return token index and time index in non-trellis coordinate.
path.append(Point(j - 1, t - 1, prob))
# 3. Update the token
if changed > stayed:
j -= 1
if j == 0:
break
else:
raise ValueError("Failed to align")
return path[::-1]
path = backtrack(trellis, emission, tokens, blank_id)
@dataclass
class Segment:
label: str
start: int
end: int
score: float
def __repr__(self):
return f"{self.label}\t{self.score:4.2f}\t{self.start*20:5d}\t{self.end*20:5d}"
@property
def length(self):
return self.end - self.start
def merge_repeats(path):
"""
Merge repeated tokens into a single segment. Note: this shouldn't affect repeated characters from the
original sentences (e.g. `ll` in `hello`)
"""
i1, i2 = 0, 0
segments = []
while i1 < len(path):
while i2 < len(path) and path[i1].token_index == path[i2].token_index:
i2 += 1
score = sum(path[k].score for k in range(i1, i2)) / (i2 - i1)
segments.append(
Segment(
transcript[path[i1].token_index],
path[i1].time_index,
path[i2 - 1].time_index + 1,
score,
)
)
i1 = i2
return segments
segments = merge_repeats(path)
with open(item["out_path"], "w") as out_align:
for seg in segments:
out_align.write(str(seg) + "\n")
def align_data(self, wav_dir, text_file, output_dir):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# load text file
lines = open(text_file, encoding="utf8").readlines()
items = []
for line in lines:
if len(line.strip().split("\t")) != 2:
print("Script must be in format: 00001 this is my sentence")
exit()
wav_name, sentence = line.strip().split("\t")
wav_path = os.path.join(wav_dir, wav_name + ".wav")
out_path = os.path.join(output_dir, wav_name + ".txt")
items.append({"sent": sentence, "wav_path": wav_path, "out_path": out_path})
print("Number of samples found in script file", len(items))
for item in tqdm(items):
self.align_single_sample(item)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name", type=str, default="arijitx/wav2vec2-xls-r-300m-bengali", help="wav2vec model name"
)
parser.add_argument("--wav_dir", type=str, default="./wavs", help="directory containing wavs")
parser.add_argument("--text_file", type=str, default="script.txt", help="file containing text")
parser.add_argument("--input_wavs_sr", type=int, default=16000, help="sampling rate of input audios")
parser.add_argument(
"--output_dir", type=str, default="./out_alignment", help="output directory containing the alignment files"
)
parser.add_argument("--cuda", action="store_true")
args = parser.parse_args()
aligner = Wav2Vec2Aligner(args.model_name, args.input_wavs_sr, args.cuda)
aligner.align_data(args.wav_dir, args.text_file, args.output_dir)
if __name__ == "__main__":
main()