626 lines
25 KiB
Python
626 lines
25 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2022 The Microsoft and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
Fine-tuning the library models for tapex on table-based question answering tasks.
|
|
Adapted from script: https://github.com/huggingface/transformers/blob/master/examples/pytorch/summarization/run_summarization.py
|
|
"""
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
from collections import defaultdict
|
|
from dataclasses import dataclass, field
|
|
from functools import partial
|
|
from typing import List, Optional
|
|
|
|
import nltk # Here to have a nice missing dependency error message early on
|
|
import numpy as np
|
|
import pandas as pd
|
|
from datasets import load_dataset
|
|
from filelock import FileLock
|
|
|
|
import transformers
|
|
from transformers import (
|
|
AutoConfig,
|
|
BartForConditionalGeneration,
|
|
DataCollatorForSeq2Seq,
|
|
HfArgumentParser,
|
|
Seq2SeqTrainer,
|
|
Seq2SeqTrainingArguments,
|
|
TapexTokenizer,
|
|
set_seed,
|
|
)
|
|
from transformers.file_utils import is_offline_mode
|
|
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
|
from transformers.utils import check_min_version
|
|
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.17.0.dev0")
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
try:
|
|
nltk.data.find("tokenizers/punkt")
|
|
except (LookupError, OSError):
|
|
if is_offline_mode():
|
|
raise LookupError(
|
|
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
|
|
)
|
|
with FileLock(".lock") as lock:
|
|
nltk.download("punkt", quiet=True)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"Pretrained tokenizer name or path if not the same as model_name. "
|
|
"By default we use BART-large tokenizer for TAPEX-large."
|
|
)
|
|
},
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
use_fast_tokenizer: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
use_auth_token: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
|
"with private models)."
|
|
)
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
"""
|
|
|
|
dataset_name: Optional[str] = field(
|
|
default="wikitablequestions", metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
train_file: Optional[str] = field(
|
|
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
|
|
)
|
|
validation_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
|
|
)
|
|
},
|
|
)
|
|
test_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
|
|
},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
)
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
)
|
|
max_source_length: Optional[int] = field(
|
|
default=1024,
|
|
metadata={
|
|
"help": (
|
|
"The maximum total input sequence length after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
)
|
|
},
|
|
)
|
|
max_target_length: Optional[int] = field(
|
|
default=128,
|
|
metadata={
|
|
"help": (
|
|
"The maximum total sequence length for target text after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
)
|
|
},
|
|
)
|
|
val_max_target_length: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. "
|
|
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
|
|
"during ``evaluate`` and ``predict``."
|
|
)
|
|
},
|
|
)
|
|
pad_to_max_length: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether to pad all samples to model maximum sentence length. "
|
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
|
|
"efficient on GPU but very bad for TPU."
|
|
)
|
|
},
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_predict_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
num_beams: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
|
|
"which is used during ``evaluate`` and ``predict``."
|
|
)
|
|
},
|
|
)
|
|
ignore_pad_token_for_loss: bool = field(
|
|
default=True,
|
|
metadata={
|
|
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
|
|
},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
|
raise ValueError("Need either a dataset name or a training/validation file.")
|
|
else:
|
|
if self.train_file is not None:
|
|
extension = self.train_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
|
if self.validation_file is not None:
|
|
extension = self.validation_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
|
|
if self.val_max_target_length is None:
|
|
self.val_max_target_length = self.max_target_length
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
# Detecting last checkpoint.
|
|
last_checkpoint = None
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
|
|
|
# Log on each process the small summary:
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
# Set the verbosity to info of the Transformers logger (on main process only):
|
|
if is_main_process(training_args.local_rank):
|
|
transformers.utils.logging.set_verbosity_info()
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
# Set seed before initializing model.
|
|
set_seed(training_args.seed)
|
|
|
|
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
|
|
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
|
# (the dataset will be downloaded automatically from the datasets Hub).
|
|
#
|
|
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
|
|
#
|
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
|
# download the dataset.
|
|
if data_args.dataset_name is not None:
|
|
# Downloading and loading a dataset from the hub.
|
|
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
|
|
else:
|
|
data_files = {}
|
|
if data_args.train_file is not None:
|
|
data_files["train"] = data_args.train_file
|
|
extension = data_args.train_file.split(".")[-1]
|
|
if data_args.validation_file is not None:
|
|
data_files["validation"] = data_args.validation_file
|
|
extension = data_args.validation_file.split(".")[-1]
|
|
if data_args.test_file is not None:
|
|
data_files["test"] = data_args.test_file
|
|
extension = data_args.test_file.split(".")[-1]
|
|
datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
|
|
|
|
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
|
# https://huggingface.co/docs/datasets/loading_datasets.
|
|
|
|
# Load pretrained model and tokenizer
|
|
#
|
|
# Distributed training:
|
|
# The .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=True if model_args.use_auth_token else None,
|
|
)
|
|
|
|
# IMPORTANT: the initial BART model's decoding is penalized by no_repeat_ngram_size, and thus
|
|
# we should disable it here to avoid problematic generation
|
|
config.no_repeat_ngram_size = 0
|
|
config.max_length = 1024
|
|
config.early_stopping = False
|
|
|
|
# load tapex tokenizer
|
|
tokenizer = TapexTokenizer.from_pretrained(
|
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
use_fast=model_args.use_fast_tokenizer,
|
|
revision=model_args.model_revision,
|
|
token=True if model_args.use_auth_token else None,
|
|
add_prefix_space=True,
|
|
)
|
|
|
|
# load Bart based Tapex model (default tapex-large)
|
|
model = BartForConditionalGeneration.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=True if model_args.use_auth_token else None,
|
|
)
|
|
|
|
if model.config.decoder_start_token_id is None:
|
|
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
|
|
|
|
# Preprocessing the datasets.
|
|
# We need to tokenize inputs and targets.
|
|
if training_args.do_train:
|
|
column_names = datasets["train"].column_names
|
|
elif training_args.do_eval:
|
|
column_names = datasets["validation"].column_names
|
|
elif training_args.do_predict:
|
|
column_names = datasets["test"].column_names
|
|
else:
|
|
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
|
|
return
|
|
|
|
# Temporarily set max_target_length for training.
|
|
max_target_length = data_args.max_target_length
|
|
padding = "max_length" if data_args.pad_to_max_length else False
|
|
|
|
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
|
|
logger.warning(
|
|
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for "
|
|
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
|
|
)
|
|
|
|
def preprocess_tableqa_function(examples, is_training=False):
|
|
"""
|
|
The is_training FLAG is used to identify if we could use the supervision
|
|
to truncate the table content if it is required.
|
|
"""
|
|
|
|
questions = [question.lower() for question in examples["question"]]
|
|
example_tables = examples["table"]
|
|
tables = [
|
|
pd.DataFrame.from_records(example_table["rows"], columns=example_table["header"])
|
|
for example_table in example_tables
|
|
]
|
|
|
|
# using wikitablequestion's answer set
|
|
answers = examples["answers"]
|
|
|
|
# IMPORTANT: we cannot pass by answers during evaluation, answers passed during training are used to
|
|
# truncate large tables in the train set!
|
|
if is_training:
|
|
model_inputs = tokenizer(
|
|
table=tables,
|
|
query=questions,
|
|
answer=answers,
|
|
max_length=data_args.max_source_length,
|
|
padding=padding,
|
|
truncation=True,
|
|
)
|
|
else:
|
|
model_inputs = tokenizer(
|
|
table=tables, query=questions, max_length=data_args.max_source_length, padding=padding, truncation=True
|
|
)
|
|
|
|
labels = tokenizer(
|
|
answer=[", ".join(answer) for answer in answers],
|
|
max_length=max_target_length,
|
|
padding=padding,
|
|
truncation=True,
|
|
)
|
|
|
|
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
|
|
# padding in the loss.
|
|
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
|
|
labels["input_ids"] = [
|
|
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
|
|
]
|
|
|
|
model_inputs["labels"] = labels["input_ids"]
|
|
|
|
return model_inputs
|
|
|
|
# in training, we can use the answer as extra information to truncate large tables
|
|
preprocess_tableqa_function_training = partial(preprocess_tableqa_function, is_training=True)
|
|
|
|
if training_args.do_train:
|
|
if "train" not in datasets:
|
|
raise ValueError("--do_train requires a train dataset")
|
|
train_dataset = datasets["train"]
|
|
if data_args.max_train_samples is not None:
|
|
train_dataset = train_dataset.select(range(data_args.max_train_samples))
|
|
train_dataset = train_dataset.map(
|
|
preprocess_tableqa_function_training,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
remove_columns=column_names,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
)
|
|
|
|
if training_args.do_eval:
|
|
max_target_length = data_args.val_max_target_length
|
|
if "validation" not in datasets:
|
|
raise ValueError("--do_eval requires a validation dataset")
|
|
eval_dataset = datasets["validation"]
|
|
if data_args.max_eval_samples is not None:
|
|
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
|
|
eval_dataset = eval_dataset.map(
|
|
preprocess_tableqa_function,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
remove_columns=column_names,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
)
|
|
|
|
if training_args.do_predict:
|
|
max_target_length = data_args.val_max_target_length
|
|
if "test" not in datasets:
|
|
raise ValueError("--do_predict requires a test dataset")
|
|
predict_dataset = datasets["test"]
|
|
if data_args.max_predict_samples is not None:
|
|
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
|
|
predict_dataset = predict_dataset.map(
|
|
preprocess_tableqa_function,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
remove_columns=column_names,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
)
|
|
|
|
# Data collator
|
|
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
|
|
data_collator = DataCollatorForSeq2Seq(
|
|
tokenizer,
|
|
model=model,
|
|
label_pad_token_id=label_pad_token_id,
|
|
pad_to_multiple_of=8 if training_args.fp16 else None,
|
|
)
|
|
|
|
def postprocess_text(preds, labels):
|
|
preds = [pred.strip() for pred in preds]
|
|
labels = [label.strip() for label in labels]
|
|
|
|
return preds, labels
|
|
|
|
def compute_metrics(eval_preds):
|
|
preds, labels = eval_preds
|
|
if isinstance(preds, tuple):
|
|
preds = preds[0]
|
|
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
|
if data_args.ignore_pad_token_for_loss:
|
|
# Replace -100 in the labels as we can't decode them.
|
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
|
|
|
# Some simple post-processing
|
|
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
|
|
|
|
delimiter = ", "
|
|
|
|
# define example evaluation
|
|
def evaluate_example(predict_str: str, ground_str: str):
|
|
predict_spans = predict_str.split(delimiter)
|
|
ground_spans = ground_str.split(delimiter)
|
|
predict_values = defaultdict(lambda: 0)
|
|
ground_values = defaultdict(lambda: 0)
|
|
for span in predict_spans:
|
|
try:
|
|
predict_values[float(span)] += 1
|
|
except ValueError:
|
|
predict_values[span.strip()] += 1
|
|
for span in ground_spans:
|
|
try:
|
|
ground_values[float(span)] += 1
|
|
except ValueError:
|
|
ground_values[span.strip()] += 1
|
|
_is_correct = predict_values == ground_values
|
|
return _is_correct
|
|
|
|
def get_denotation_accuracy(predictions: List[str], references: List[str]):
|
|
assert len(predictions) == len(references)
|
|
correct_num = 0
|
|
for predict_str, ground_str in zip(predictions, references):
|
|
is_correct = evaluate_example(predict_str.lower(), ground_str.lower())
|
|
if is_correct:
|
|
correct_num += 1
|
|
return correct_num / len(predictions)
|
|
|
|
accuracy = get_denotation_accuracy(decoded_preds, decoded_labels)
|
|
result = {"denotation_accuracy": accuracy}
|
|
|
|
return result
|
|
|
|
# Initialize our Trainer
|
|
trainer = Seq2SeqTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=train_dataset if training_args.do_train else None,
|
|
eval_dataset=eval_dataset if training_args.do_eval else None,
|
|
tokenizer=tokenizer,
|
|
data_collator=data_collator,
|
|
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
|
|
)
|
|
|
|
if training_args.do_train:
|
|
checkpoint = None
|
|
if training_args.resume_from_checkpoint is not None:
|
|
checkpoint = training_args.resume_from_checkpoint
|
|
elif last_checkpoint is not None:
|
|
checkpoint = last_checkpoint
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
trainer.save_model() # Saves the tokenizer too for easy upload
|
|
|
|
metrics = train_result.metrics
|
|
max_train_samples = (
|
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
|
)
|
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
|
|
|
trainer.log_metrics("train", metrics)
|
|
trainer.save_metrics("train", metrics)
|
|
trainer.save_state()
|
|
|
|
# Evaluation
|
|
results = {}
|
|
if training_args.do_eval:
|
|
logger.info("*** Evaluate ***")
|
|
|
|
metrics = trainer.evaluate(
|
|
max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, metric_key_prefix="eval"
|
|
)
|
|
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
|
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
|
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
if training_args.do_predict:
|
|
logger.info("*** Predict ***")
|
|
|
|
predict_results = trainer.predict(
|
|
predict_dataset,
|
|
metric_key_prefix="predict",
|
|
max_length=data_args.val_max_target_length,
|
|
num_beams=data_args.num_beams,
|
|
)
|
|
metrics = predict_results.metrics
|
|
max_predict_samples = (
|
|
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
|
|
)
|
|
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
|
|
|
|
trainer.log_metrics("predict", metrics)
|
|
trainer.save_metrics("predict", metrics)
|
|
|
|
if trainer.is_world_process_zero():
|
|
if training_args.predict_with_generate:
|
|
predictions = tokenizer.batch_decode(
|
|
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
|
)
|
|
predictions = [pred.strip() for pred in predictions]
|
|
output_prediction_file = os.path.join(training_args.output_dir, "tapex_predictions.txt")
|
|
with open(output_prediction_file, "w") as writer:
|
|
writer.write("\n".join(predictions))
|
|
|
|
return results
|
|
|
|
|
|
def _mp_fn(index):
|
|
# For xla_spawn (TPUs)
|
|
main()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|