transformers/examples/research_projects/quantization-qdqbert/ort-infer-benchmark.py

51 lines
1.4 KiB
Python

import os
import time
import numpy as np
import onnxruntime as ort
os.environ["ORT_TENSORRT_INT8_ENABLE"] = "1"
os.environ["ORT_TENSORRT_INT8_USE_NATIVE_CALIBRATION_TABLE"] = "0"
os.environ["ORT_TENSORRT_ENGINE_CACHE_ENABLE"] = "1"
sess_opt = ort.SessionOptions()
sess_opt.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
print("Create inference session...")
execution_provider = ["TensorrtExecutionProvider", "CUDAExecutionProvider"]
sess = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider)
run_opt = ort.RunOptions()
sequence = 128
batch = 1
input_ids = np.ones((batch, sequence), dtype=np.int64)
attention_mask = np.ones((batch, sequence), dtype=np.int64)
token_type_ids = np.ones((batch, sequence), dtype=np.int64)
print("Warm up phase...")
sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print("Start inference...")
start_time = time.time()
max_iters = 2000
predict = {}
for iter in range(max_iters):
predict = sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 1000 / max_iters))