28 lines
893 B
Python
28 lines
893 B
Python
from arguments import InitializationArguments
|
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
|
|
|
|
|
|
# Configuration
|
|
parser = HfArgumentParser(InitializationArguments)
|
|
args = parser.parse_args()
|
|
|
|
# Load codeparrot tokenizer trained for Python code tokenization
|
|
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name)
|
|
|
|
# Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks
|
|
config_kwargs = {
|
|
"vocab_size": len(tokenizer),
|
|
"scale_attn_by_inverse_layer_idx": True,
|
|
"reorder_and_upcast_attn": True,
|
|
}
|
|
|
|
# Load model config (GPT-2 large in this case)
|
|
config = AutoConfig.from_pretrained(args.config_name, **config_kwargs)
|
|
|
|
# Initialize new model with config
|
|
model = AutoModelForCausalLM.from_config(config)
|
|
|
|
# Save model to the hub
|
|
model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
|