221 lines
10 KiB
Python
221 lines
10 KiB
Python
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
|
|
|
|
@dataclass
|
|
class TrainingArguments:
|
|
"""
|
|
Configuration for training model.
|
|
"""
|
|
|
|
model_ckpt: Optional[str] = field(
|
|
default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be trained."}
|
|
)
|
|
save_dir: Optional[str] = field(
|
|
default="./", metadata={"help": "Save dir where model repo is cloned and models updates are saved to."}
|
|
)
|
|
dataset_name_train: Optional[str] = field(
|
|
default="codeparrot/codeparrot-clean-train", metadata={"help": "Name or path of training dataset."}
|
|
)
|
|
dataset_name_valid: Optional[str] = field(
|
|
default="codeparrot/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."}
|
|
)
|
|
train_batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size for training."})
|
|
valid_batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size for evaluation."})
|
|
weight_decay: Optional[float] = field(default=0.1, metadata={"help": "Value of weight decay."})
|
|
shuffle_buffer: Optional[int] = field(
|
|
default=10000, metadata={"help": "Size of buffer used to shuffle streaming dataset."}
|
|
)
|
|
learning_rate: Optional[float] = field(default=2e-4, metadata={"help": "Learning rate fo training."})
|
|
lr_scheduler_type: Optional[str] = field(default="cosine", metadata={"help": "Learning rate."})
|
|
num_warmup_steps: Optional[int] = field(
|
|
default=750, metadata={"help": "Number of warmup steps in the learning rate schedule."}
|
|
)
|
|
gradient_accumulation_steps: Optional[int] = field(
|
|
default=16, metadata={"help": "Number of gradient accumulation steps."}
|
|
)
|
|
gradient_checkpointing: Optional[bool] = field(
|
|
default=True, metadata={"help": "Use gradient checkpointing to reduce memory footprint."}
|
|
)
|
|
max_train_steps: Optional[int] = field(default=50000, metadata={"help": "Maximum number of training steps."})
|
|
max_eval_steps: Optional[int] = field(
|
|
default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."}
|
|
)
|
|
seq_length: Optional[int] = field(default=1024, metadata={"help": "Sequence lengths used for training."})
|
|
seed: Optional[int] = field(default=1, metadata={"help": "Training seed."})
|
|
save_checkpoint_steps: Optional[int] = field(
|
|
default=1024,
|
|
metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."},
|
|
)
|
|
resume_from_checkpoint: Optional[str] = field(
|
|
default=None, metadata={"help": "States path if the training should continue from a checkpoint folder."}
|
|
)
|
|
tokenized: Optional[bool] = field(default=False, metadata={"help": "If True the data is pretokenized."})
|
|
|
|
|
|
@dataclass
|
|
class EvaluationArguments:
|
|
"""
|
|
Configuration for evaluating model.
|
|
"""
|
|
|
|
model_ckpt: Optional[str] = field(
|
|
default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be evaluated."}
|
|
)
|
|
dataset_name: Optional[str] = field(
|
|
default="codeparrot/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."}
|
|
)
|
|
batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size used for evaluation."})
|
|
max_eval_steps: Optional[int] = field(
|
|
default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."}
|
|
)
|
|
seq_length: Optional[int] = field(default=1024, metadata={"help": "Length of sequences to be evaluated."})
|
|
seed: Optional[int] = field(default=1, metadata={"help": "Random seed used for evaluation."})
|
|
|
|
|
|
@dataclass
|
|
class HumanEvalArguments:
|
|
"""
|
|
Configuration for running evaluation on HumanEval dataset.
|
|
"""
|
|
|
|
model_ckpt: Optional[str] = field(
|
|
default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be evaluated."}
|
|
)
|
|
num_workers: Optional[int] = field(default=None, metadata={"help": "Number of workers used for code evaluation."})
|
|
num_tasks: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."},
|
|
)
|
|
do_sample: Optional[bool] = field(
|
|
default=True, metadata={"help": "Sample from the language model's output distribution."}
|
|
)
|
|
temperature: Optional[float] = field(default=0.2, metadata={"help": "Sampling temperature used for generation."})
|
|
max_new_tokens: Optional[int] = field(default=256, metadata={"help": "Maximum number of newly generated tokens."})
|
|
top_k: Optional[int] = field(default=0, metadata={"help": "Top-k parameter used for generation."})
|
|
top_p: Optional[float] = field(default=0.95, metadata={"help": "Top-p parameter used for nucleus sampling."})
|
|
batch_size: Optional[int] = field(default=10, metadata={"help": "Number of generations to run in parallel."})
|
|
n_samples: Optional[int] = field(
|
|
default=200, metadata={"help": "Number of completions to generate for each sample."}
|
|
)
|
|
seed: Optional[int] = field(default=1, metadata={"help": "Random seed used for evaluation."})
|
|
output_file: Optional[str] = field(
|
|
default="eval_results.json", metadata={"help": "Random seed used for evaluation."}
|
|
)
|
|
HF_ALLOW_CODE_EVAL: Optional[str] = field(
|
|
default="0", metadata={"help": "Allow `code_eval` to execute Python code on machine"}
|
|
)
|
|
device_int: Optional[int] = field(
|
|
default=-1,
|
|
metadata={
|
|
"help": (
|
|
"Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive"
|
|
" number corresponds to which GPU device id to run on."
|
|
)
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class PreprocessingArguments:
|
|
"""
|
|
Configuration for preprocessing data.
|
|
"""
|
|
|
|
num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."
|
|
},
|
|
)
|
|
dataset_name: Optional[str] = field(
|
|
default="transformersbook/codeparrot", metadata={"help": "Folder or name of dataset to process."}
|
|
)
|
|
output_dir: Optional[str] = field(
|
|
default="codeparrot-clean", metadata={"help": "Folder to save processed processed dataset."}
|
|
)
|
|
samples_per_file: Optional[int] = field(
|
|
default=100_000, metadata={"help": "Number of files to save per JSON output file."}
|
|
)
|
|
text_column: Optional[str] = field(default="content", metadata={"help": "Column containing text data to process."})
|
|
line_max: Optional[float] = field(
|
|
default=1000, metadata={"help": "Maximum line length in file, otherwise file is filtered."}
|
|
)
|
|
line_mean: Optional[float] = field(
|
|
default=100, metadata={"help": "Maximum mean line length in file, otherwise file is filtered."}
|
|
)
|
|
alpha_frac: Optional[float] = field(
|
|
default=0.25, metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."}
|
|
)
|
|
min_token_ratio: Optional[float] = field(
|
|
default=1.5, metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."}
|
|
)
|
|
filter_proba: Optional[float] = field(
|
|
default=0.7, metadata={"help": "Probability for filtering config, test and uncommon files."}
|
|
)
|
|
tokenizer: Optional[str] = field(
|
|
default="codeparrot/codeparrot",
|
|
metadata={"help": "Name or path to the tokenizer."},
|
|
)
|
|
near_deduplication: Optional[bool] = field(
|
|
default=False, metadata={"help": "If True, near-duplicate samples are removed."}
|
|
)
|
|
jaccard_threshold: Optional[float] = field(
|
|
default=0.85, metadata={"help": "Jaccard threshold for near-duplicate samples."}
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class TokenizerTrainingArguments:
|
|
"""
|
|
Configuration for tokenizer training.
|
|
"""
|
|
|
|
base_tokenizer: Optional[str] = field(
|
|
default="openai-community/gpt2", metadata={"help": "Base tokenizer to build new tokenizer from."}
|
|
)
|
|
dataset_name: Optional[str] = field(
|
|
default="transformersbook/codeparrot-train", metadata={"help": "Dataset to train tokenizer on."}
|
|
)
|
|
text_column: Optional[str] = field(default="content", metadata={"help": "Column containing text data to process."})
|
|
vocab_size: Optional[int] = field(default=200_000, metadata={"help": "Number of examples to train tokenizer on."})
|
|
n_examples: Optional[int] = field(
|
|
default=32768, metadata={"help": "Number of examples to train the tokenizer on."}
|
|
)
|
|
tokenizer_name: Optional[str] = field(default="codeparrot", metadata={"help": "Name of new tokenizer."})
|
|
push_to_hub: Optional[bool] = field(default=True, metadata={"help": "Push saved tokenizer to the hub."})
|
|
|
|
|
|
@dataclass
|
|
class PretokenizationArguments:
|
|
"""
|
|
Configuration for data pretokenization.
|
|
"""
|
|
|
|
tokenizer_dir: Optional[str] = field(
|
|
default="codeparrot/codeparrot", metadata={"help": "Name or path to the tokenizer."}
|
|
)
|
|
dataset_name: Optional[str] = field(
|
|
default="codeparrot/codeparrot-clean-train", metadata={"help": "Name or path to the dataset to pretokenize."}
|
|
)
|
|
tokenized_data_repo: Optional[str] = field(
|
|
default="tokenized-codeparrot-train", metadata={"help": "Repo name of the pretokenized data."}
|
|
)
|
|
num_workers: Optional[int] = field(default=None, metadata={"help": "Number of workers used for code evaluation."})
|
|
|
|
|
|
@dataclass
|
|
class InitializationArguments:
|
|
"""
|
|
Configuration for initializing new model.
|
|
"""
|
|
|
|
config_name: Optional[str] = field(
|
|
default="openai-community/gpt2-large", metadata={"help": "Configuration to use for model initialization."}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default="codeparrot/codeparrot", metadata={"help": "Tokenizer attached to model."}
|
|
)
|
|
model_name: Optional[str] = field(default="codeparrot", metadata={"help": "Name of the created model."})
|
|
push_to_hub: Optional[bool] = field(default=True, metadata={"help": "Push saved tokenizer to the hub."})
|