821 lines
30 KiB
Python
821 lines
30 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
import os
|
|
import warnings
|
|
from pathlib import Path
|
|
|
|
import datasets
|
|
import numpy as np
|
|
import torch
|
|
from accelerate import Accelerator, DistributedType
|
|
from accelerate.utils import set_seed
|
|
from datasets import load_dataset
|
|
from huggingface_hub import HfApi
|
|
from torch.utils.data import DataLoader
|
|
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
|
|
from tqdm.auto import tqdm
|
|
|
|
import transformers
|
|
from transformers import (
|
|
CONFIG_MAPPING,
|
|
IMAGE_PROCESSOR_MAPPING,
|
|
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
|
|
AutoConfig,
|
|
AutoImageProcessor,
|
|
AutoModelForMaskedImageModeling,
|
|
SchedulerType,
|
|
get_scheduler,
|
|
)
|
|
from transformers.utils import check_min_version, send_example_telemetry
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
""" Pre-training a 🤗 Transformers model for simple masked image modeling (SimMIM)
|
|
without using HuggingFace Trainer.
|
|
Any model supported by the AutoModelForMaskedImageModeling API can be used.
|
|
"""
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.41.0.dev0")
|
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
|
|
|
|
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys())
|
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description="Finetune a transformers model on a simple Masked Image Modeling task"
|
|
)
|
|
parser.add_argument(
|
|
"--dataset_name",
|
|
type=str,
|
|
default="cifar10",
|
|
help="Name of a dataset from the datasets package",
|
|
)
|
|
parser.add_argument(
|
|
"--dataset_config_name",
|
|
type=str,
|
|
default=None,
|
|
help="The configuration name of the dataset to use (via the datasets library).",
|
|
)
|
|
parser.add_argument(
|
|
"--image_column_name",
|
|
type=str,
|
|
default=None,
|
|
help="The column name of the images in the files. If not set, will try to use 'image' or 'img'.",
|
|
)
|
|
parser.add_argument(
|
|
"--train_dir",
|
|
type=str,
|
|
default=None,
|
|
help="A folder containing the training data.",
|
|
)
|
|
parser.add_argument(
|
|
"--validation_dir",
|
|
type=None,
|
|
default=None,
|
|
help="A folder containing the validation data.",
|
|
)
|
|
parser.add_argument(
|
|
"--train_val_split",
|
|
type=float,
|
|
default=0.15,
|
|
help="Percent to split off of train for validation.",
|
|
)
|
|
parser.add_argument(
|
|
"--mask_patch_size",
|
|
type=int,
|
|
default=32,
|
|
help="The size of the square patches to use for masking.",
|
|
)
|
|
parser.add_argument(
|
|
"--mask_ratio",
|
|
type=float,
|
|
default=0.6,
|
|
help="Percentage of patches to mask.",
|
|
)
|
|
parser.add_argument(
|
|
"--max_train_samples",
|
|
type=int,
|
|
default=None,
|
|
help=(
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--max_eval_samples",
|
|
type=int,
|
|
default=None,
|
|
help=(
|
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--model_name_or_path",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a "
|
|
"checkpoint identifier on the hub. "
|
|
"Don't set if you want to train a model from scratch."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--model_type",
|
|
type=str,
|
|
default=None,
|
|
help="If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES),
|
|
)
|
|
parser.add_argument(
|
|
"--config_name_or_path",
|
|
type=str,
|
|
default=None,
|
|
help="Pretrained config name or path if not the same as model_name",
|
|
)
|
|
parser.add_argument(
|
|
"--config_overrides",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"Override some existing default config settings when a model is trained from scratch. Example: "
|
|
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--cache_dir",
|
|
type=str,
|
|
default=None,
|
|
help="Where do you want to store (cache) the pretrained models/datasets downloaded from the hub",
|
|
)
|
|
parser.add_argument(
|
|
"--model_revision",
|
|
type=str,
|
|
default="main",
|
|
help="The specific model version to use (can be a branch name, tag name or commit id).",
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_accumulation_steps",
|
|
type=int,
|
|
default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--image_processor_name",
|
|
type=str,
|
|
default=None,
|
|
help="Name or path of preprocessor config.",
|
|
)
|
|
parser.add_argument(
|
|
"--token",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--use_auth_token",
|
|
type=bool,
|
|
default=None,
|
|
help="The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
|
)
|
|
parser.add_argument(
|
|
"--trust_remote_code",
|
|
type=bool,
|
|
default=False,
|
|
help=(
|
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
|
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
|
|
"execute code present on the Hub on your local machine."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--image_size",
|
|
type=int,
|
|
default=None,
|
|
help="The size (resolution) of each image. If not specified, will use `image_size` of the configuration.",
|
|
)
|
|
parser.add_argument(
|
|
"--patch_size",
|
|
type=int,
|
|
default=None,
|
|
help="The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.",
|
|
)
|
|
parser.add_argument(
|
|
"--encoder_stride",
|
|
type=int,
|
|
default=None,
|
|
help={"help": "Stride to use for the encoder."},
|
|
)
|
|
parser.add_argument(
|
|
"--push_to_hub",
|
|
action="store_true",
|
|
help="Whether or not to push the model to the Hub.",
|
|
)
|
|
parser.add_argument(
|
|
"--with_tracking",
|
|
action="store_true",
|
|
help="Whether to enable experiment trackers for logging.",
|
|
)
|
|
parser.add_argument(
|
|
"--report_to",
|
|
type=str,
|
|
default="all",
|
|
help=(
|
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
|
|
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. '
|
|
"Only applicable when `--with_tracking` is passed."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--seed",
|
|
type=int,
|
|
default=None,
|
|
help="A seed for reproducible training.",
|
|
)
|
|
parser.add_argument(
|
|
"--per_device_train_batch_size",
|
|
type=int,
|
|
default=8,
|
|
help="Batch size (per device) for the training dataloader.",
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=5e-5,
|
|
help="The initial learning rate for [`AdamW`] optimizer.",
|
|
)
|
|
parser.add_argument(
|
|
"--weight_decay",
|
|
type=float,
|
|
default=0.0,
|
|
help="Weight decay to use.",
|
|
)
|
|
parser.add_argument(
|
|
"--num_train_epochs",
|
|
type=float,
|
|
default=3.0,
|
|
help="Total number of training epochs to perform (if not an integer, will perform the decimal part percents of the last epoch before stopping training).",
|
|
)
|
|
parser.add_argument(
|
|
"--max_train_steps",
|
|
type=int,
|
|
default=None,
|
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
|
)
|
|
parser.add_argument(
|
|
"--lr_scheduler_type",
|
|
type=SchedulerType,
|
|
default="linear",
|
|
help="The scheduler type to use.",
|
|
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
|
|
)
|
|
parser.add_argument(
|
|
"--num_warmup_steps",
|
|
type=int,
|
|
default=0,
|
|
help="Number of steps for the warmup in the lr scheduler.",
|
|
)
|
|
parser.add_argument(
|
|
"--checkpointing_steps",
|
|
type=str,
|
|
default=None,
|
|
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
|
|
)
|
|
parser.add_argument(
|
|
"--resume_from_checkpoint",
|
|
type=str,
|
|
default=None,
|
|
help="If the training should continue from a checkpoint folder.",
|
|
)
|
|
parser.add_argument(
|
|
"--per_device_eval_batch_size",
|
|
type=int,
|
|
default=8,
|
|
help="Batch size (per device) for the evaluation dataloader.",
|
|
)
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default=None,
|
|
help="Where to store the final model.",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
# Sanity checks
|
|
data_files = {}
|
|
if args.train_dir is not None:
|
|
data_files["train"] = args.train_dir
|
|
if args.validation_dir is not None:
|
|
data_files["val"] = args.validation_dir
|
|
args.data_files = data_files if data_files else None
|
|
|
|
if args.push_to_hub:
|
|
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
|
|
|
|
return args
|
|
|
|
|
|
class MaskGenerator:
|
|
"""
|
|
A class to generate boolean masks for the pretraining task.
|
|
|
|
A mask is a 1D tensor of shape (model_patch_size**2,) where the value is either 0 or 1,
|
|
where 1 indicates "masked".
|
|
"""
|
|
|
|
def __init__(self, input_size=192, mask_patch_size=32, model_patch_size=4, mask_ratio=0.6):
|
|
self.input_size = input_size
|
|
self.mask_patch_size = mask_patch_size
|
|
self.model_patch_size = model_patch_size
|
|
self.mask_ratio = mask_ratio
|
|
|
|
if self.input_size % self.mask_patch_size != 0:
|
|
raise ValueError("Input size must be divisible by mask patch size")
|
|
if self.mask_patch_size % self.model_patch_size != 0:
|
|
raise ValueError("Mask patch size must be divisible by model patch size")
|
|
|
|
self.rand_size = self.input_size // self.mask_patch_size
|
|
self.scale = self.mask_patch_size // self.model_patch_size
|
|
|
|
self.token_count = self.rand_size**2
|
|
self.mask_count = int(np.ceil(self.token_count * self.mask_ratio))
|
|
|
|
def __call__(self):
|
|
mask_idx = np.random.permutation(self.token_count)[: self.mask_count]
|
|
mask = np.zeros(self.token_count, dtype=int)
|
|
mask[mask_idx] = 1
|
|
|
|
mask = mask.reshape((self.rand_size, self.rand_size))
|
|
mask = mask.repeat(self.scale, axis=0).repeat(self.scale, axis=1)
|
|
|
|
return torch.tensor(mask.flatten())
|
|
|
|
|
|
def collate_fn(examples):
|
|
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
|
mask = torch.stack([example["mask"] for example in examples])
|
|
return {"pixel_values": pixel_values, "bool_masked_pos": mask}
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
if args.use_auth_token is not None:
|
|
warnings.warn(
|
|
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
|
FutureWarning,
|
|
)
|
|
if args.token is not None:
|
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
|
args.token = args.use_auth_token
|
|
|
|
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
|
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
|
send_example_telemetry("run_mim_no_trainer", args)
|
|
|
|
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
|
|
# If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
|
|
# in the environment
|
|
accelerator_log_kwargs = {}
|
|
|
|
if args.with_tracking:
|
|
accelerator_log_kwargs["log_with"] = args.report_to
|
|
accelerator_log_kwargs["project_dir"] = args.output_dir
|
|
|
|
accelerator = Accelerator(
|
|
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
|
**accelerator_log_kwargs,
|
|
)
|
|
|
|
# Make one log on every process with the configuration for debugging.
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
logger.info(accelerator.state)
|
|
if accelerator.is_local_main_process:
|
|
datasets.utils.logging.set_verbosity_warning()
|
|
transformers.utils.logging.set_verbosity_info()
|
|
else:
|
|
datasets.utils.logging.set_verbosity_error()
|
|
transformers.utils.logging.set_verbosity_error()
|
|
|
|
# If passed along, set the training seed now.
|
|
if args.seed is not None:
|
|
set_seed(args.seed)
|
|
|
|
# Handle the repository creation
|
|
if accelerator.is_main_process:
|
|
if args.push_to_hub:
|
|
# Retrieve of infer repo_name
|
|
repo_name = args.hub_model_id
|
|
if repo_name is None:
|
|
repo_name = Path(args.output_dir).absolute().name
|
|
# Create repo and retrieve repo_id
|
|
api = HfApi()
|
|
repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
|
|
|
|
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
|
if "step_*" not in gitignore:
|
|
gitignore.write("step_*\n")
|
|
if "epoch_*" not in gitignore:
|
|
gitignore.write("epoch_*\n")
|
|
|
|
elif args.output_dir is not None:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
accelerator.wait_for_everyone()
|
|
|
|
# Initialize our dataset.
|
|
ds = load_dataset(
|
|
args.dataset_name,
|
|
args.dataset_config_name,
|
|
data_files=args.data_files,
|
|
cache_dir=args.cache_dir,
|
|
token=args.token,
|
|
)
|
|
|
|
# If we don't have a validation split, split off a percentage of train as validation.
|
|
args.train_val_split = None if "validation" in ds.keys() else args.train_val_split
|
|
if isinstance(args.train_val_split, float) and args.train_val_split > 0.0:
|
|
split = ds["train"].train_test_split(args.train_val_split)
|
|
ds["train"] = split["train"]
|
|
ds["validation"] = split["test"]
|
|
|
|
# Create config
|
|
# Distributed training:
|
|
# The .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
config_kwargs = {
|
|
"cache_dir": args.cache_dir,
|
|
"revision": args.model_revision,
|
|
"token": args.token,
|
|
"trust_remote_code": args.trust_remote_code,
|
|
}
|
|
if args.config_name_or_path:
|
|
config = AutoConfig.from_pretrained(args.config_name_or_path, **config_kwargs)
|
|
elif args.model_name_or_path:
|
|
config = AutoConfig.from_pretrained(args.model_name_or_path, **config_kwargs)
|
|
else:
|
|
config = CONFIG_MAPPING[args.model_type]()
|
|
logger.warning("You are instantiating a new config instance from scratch.")
|
|
if args.config_overrides is not None:
|
|
logger.info(f"Overriding config: {args.config_overrides}")
|
|
config.update_from_string(args.config_overrides)
|
|
logger.info(f"New config: {config}")
|
|
|
|
# make sure the decoder_type is "simmim" (only relevant for BEiT)
|
|
if hasattr(config, "decoder_type"):
|
|
config.decoder_type = "simmim"
|
|
|
|
# adapt config
|
|
args.image_size = args.image_size if args.image_size is not None else config.image_size
|
|
args.patch_size = args.patch_size if args.patch_size is not None else config.patch_size
|
|
args.encoder_stride = args.encoder_stride if args.encoder_stride is not None else config.encoder_stride
|
|
|
|
config.update(
|
|
{
|
|
"image_size": args.image_size,
|
|
"patch_size": args.patch_size,
|
|
"encoder_stride": args.encoder_stride,
|
|
}
|
|
)
|
|
|
|
# create image processor
|
|
if args.image_processor_name:
|
|
image_processor = AutoImageProcessor.from_pretrained(args.image_processor_name, **config_kwargs)
|
|
elif args.model_name_or_path:
|
|
image_processor = AutoImageProcessor.from_pretrained(args.model_name_or_path, **config_kwargs)
|
|
else:
|
|
IMAGE_PROCESSOR_TYPES = {
|
|
conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items()
|
|
}
|
|
image_processor = IMAGE_PROCESSOR_TYPES[args.model_type]()
|
|
|
|
# create model
|
|
if args.model_name_or_path:
|
|
model = AutoModelForMaskedImageModeling.from_pretrained(
|
|
args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=args.cache_dir,
|
|
revision=args.model_revision,
|
|
token=args.token,
|
|
trust_remote_code=args.trust_remote_code,
|
|
)
|
|
else:
|
|
logger.info("Training new model from scratch")
|
|
model = AutoModelForMaskedImageModeling.from_config(
|
|
config,
|
|
token=args.token,
|
|
trust_remote_code=args.trust_remote_code,
|
|
)
|
|
|
|
column_names = ds["train"].column_names
|
|
|
|
if args.image_column_name is not None:
|
|
image_column_name = args.image_column_name
|
|
elif "image" in column_names:
|
|
image_column_name = "image"
|
|
elif "img" in column_names:
|
|
image_column_name = "img"
|
|
else:
|
|
image_column_name = column_names[0]
|
|
|
|
# transformations as done in original SimMIM paper
|
|
# source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py
|
|
transforms = Compose(
|
|
[
|
|
Lambda(lambda img: img.convert("RGB")),
|
|
RandomResizedCrop(args.image_size, scale=(0.67, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0)),
|
|
RandomHorizontalFlip(),
|
|
ToTensor(),
|
|
Normalize(mean=image_processor.image_mean, std=image_processor.image_std),
|
|
]
|
|
)
|
|
|
|
# create mask generator
|
|
mask_generator = MaskGenerator(
|
|
input_size=args.image_size,
|
|
mask_patch_size=args.mask_patch_size,
|
|
model_patch_size=args.patch_size,
|
|
mask_ratio=args.mask_ratio,
|
|
)
|
|
|
|
def preprocess_images(examples):
|
|
"""Preprocess a batch of images by applying transforms + creating a corresponding mask, indicating
|
|
which patches to mask."""
|
|
|
|
examples["pixel_values"] = [transforms(image) for image in examples[image_column_name]]
|
|
examples["mask"] = [mask_generator() for i in range(len(examples[image_column_name]))]
|
|
|
|
return examples
|
|
|
|
if args.max_train_samples is not None:
|
|
ds["train"] = ds["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
|
|
# Set the training transforms
|
|
ds["train"].set_transform(preprocess_images)
|
|
|
|
if args.max_eval_samples is not None:
|
|
ds["validation"] = ds["validation"].shuffle(seed=args.seed).select(range(args.max_eval_samples))
|
|
# Set the validation transforms
|
|
ds["validation"].set_transform(preprocess_images)
|
|
|
|
# DataLoaders creation:
|
|
train_dataloader = DataLoader(
|
|
ds["train"],
|
|
shuffle=True,
|
|
collate_fn=collate_fn,
|
|
batch_size=args.per_device_train_batch_size,
|
|
)
|
|
eval_dataloader = DataLoader(
|
|
ds["validation"],
|
|
collate_fn=collate_fn,
|
|
batch_size=args.per_device_eval_batch_size,
|
|
)
|
|
|
|
# Optimizer
|
|
# Split weights in two groups, one with weight decay and the other not.
|
|
no_decay = ["bias", "LayerNorm.weight"]
|
|
optimizer_grouped_parameters = [
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
|
"weight_decay": args.weight_decay,
|
|
},
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
|
"weight_decay": 0.0,
|
|
},
|
|
]
|
|
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
|
|
|
|
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
|
|
# shorter in multiprocess)
|
|
|
|
# Scheduler and math around the number of training steps.
|
|
overrode_max_train_steps = False
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
if args.max_train_steps is None:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
overrode_max_train_steps = True
|
|
|
|
lr_scheduler = get_scheduler(
|
|
name=args.lr_scheduler_type,
|
|
optimizer=optimizer,
|
|
num_warmup_steps=args.num_warmup_steps * accelerator.num_processes,
|
|
num_training_steps=args.max_train_steps
|
|
if overrode_max_train_steps
|
|
else args.max_train_steps * accelerator.num_processes,
|
|
)
|
|
|
|
# Prepare everything with our `accelerator`.
|
|
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
|
|
model,
|
|
optimizer,
|
|
train_dataloader,
|
|
eval_dataloader,
|
|
lr_scheduler,
|
|
)
|
|
|
|
# On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
|
|
if accelerator.distributed_type == DistributedType.TPU:
|
|
model.tie_weights()
|
|
|
|
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
if overrode_max_train_steps:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
# Afterwards we recalculate our number of training epochs
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
|
|
# Figure out how many steps we should save the Accelerator states
|
|
checkpointing_steps = args.checkpointing_steps
|
|
if checkpointing_steps is not None and checkpointing_steps.isdigit():
|
|
checkpointing_steps = int(checkpointing_steps)
|
|
|
|
# We need to initialize the trackers we use, and also store our configuration.
|
|
# The trackers initializes automatically on the main process.
|
|
if args.with_tracking:
|
|
experiment_config = vars(args)
|
|
# TensorBoard cannot log Enums, need the raw value
|
|
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
|
|
accelerator.init_trackers("mim_no_trainer", experiment_config)
|
|
|
|
# Train!
|
|
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {len(ds['train'])}")
|
|
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
|
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
|
# Only show the progress bar once on each machine.
|
|
progress_bar = tqdm(range(int(args.max_train_steps)), disable=not accelerator.is_local_main_process)
|
|
completed_steps = 0
|
|
starting_epoch = 0
|
|
|
|
# Potentially load in the weights and states from a previous save
|
|
if args.resume_from_checkpoint:
|
|
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
|
|
checkpoint_path = args.resume_from_checkpoint
|
|
path = os.path.basename(args.resume_from_checkpoint)
|
|
else:
|
|
# Get the most recent checkpoint
|
|
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
|
|
dirs.sort(key=os.path.getctime)
|
|
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
|
|
checkpoint_path = path
|
|
path = os.path.basename(checkpoint_path)
|
|
|
|
accelerator.print(f"Resumed from checkpoint: {checkpoint_path}")
|
|
accelerator.load_state(checkpoint_path)
|
|
# Extract `epoch_{i}` or `step_{i}`
|
|
training_difference = os.path.splitext(path)[0]
|
|
|
|
if "epoch" in training_difference:
|
|
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
|
|
resume_step = None
|
|
completed_steps = starting_epoch * num_update_steps_per_epoch
|
|
else:
|
|
# need to multiply `gradient_accumulation_steps` to reflect real steps
|
|
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
|
|
starting_epoch = resume_step // len(train_dataloader)
|
|
completed_steps = resume_step // args.gradient_accumulation_steps
|
|
resume_step -= starting_epoch * len(train_dataloader)
|
|
|
|
# update the progress_bar if load from checkpoint
|
|
progress_bar.update(completed_steps)
|
|
|
|
for epoch in range(starting_epoch, args.num_train_epochs):
|
|
model.train()
|
|
if args.with_tracking:
|
|
total_loss = 0
|
|
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
|
|
# We skip the first `n` batches in the dataloader when resuming from a checkpoint
|
|
active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
|
|
else:
|
|
active_dataloader = train_dataloader
|
|
for step, batch in enumerate(active_dataloader):
|
|
with accelerator.accumulate(model):
|
|
outputs = model(**batch)
|
|
loss = outputs.loss
|
|
# We keep track of the loss at each epoch
|
|
if args.with_tracking:
|
|
total_loss += loss.detach().float()
|
|
accelerator.backward(loss)
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad()
|
|
|
|
# Checks if the accelerator has performed an optimization step behind the scenes
|
|
if accelerator.sync_gradients:
|
|
progress_bar.update(1)
|
|
completed_steps += 1
|
|
|
|
if isinstance(checkpointing_steps, int):
|
|
if completed_steps % checkpointing_steps == 0:
|
|
output_dir = f"step_{completed_steps}"
|
|
if args.output_dir is not None:
|
|
output_dir = os.path.join(args.output_dir, output_dir)
|
|
accelerator.save_state(output_dir)
|
|
|
|
if completed_steps >= args.max_train_steps:
|
|
break
|
|
|
|
model.eval()
|
|
losses = []
|
|
for step, batch in enumerate(eval_dataloader):
|
|
with torch.no_grad():
|
|
outputs = model(**batch)
|
|
|
|
loss = outputs.loss
|
|
losses.append(accelerator.gather_for_metrics(loss.repeat(args.per_device_eval_batch_size)))
|
|
|
|
losses = torch.cat(losses)
|
|
eval_loss = torch.mean(losses)
|
|
|
|
logger.info(f"epoch {epoch}: eval_loss: {eval_loss}")
|
|
|
|
if args.with_tracking:
|
|
accelerator.log(
|
|
{
|
|
"eval_loss": eval_loss,
|
|
"train_loss": total_loss.item() / len(train_dataloader),
|
|
"epoch": epoch,
|
|
"step": completed_steps,
|
|
},
|
|
step=completed_steps,
|
|
)
|
|
|
|
if args.push_to_hub and epoch < args.num_train_epochs - 1:
|
|
accelerator.wait_for_everyone()
|
|
unwrapped_model = accelerator.unwrap_model(model)
|
|
unwrapped_model.save_pretrained(
|
|
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
|
|
)
|
|
if accelerator.is_main_process:
|
|
image_processor.save_pretrained(args.output_dir)
|
|
api.upload_folder(
|
|
commit_message=f"Training in progress epoch {epoch}",
|
|
folder_path=args.output_dir,
|
|
repo_id=repo_id,
|
|
repo_type="model",
|
|
token=args.hub_token,
|
|
)
|
|
|
|
if args.checkpointing_steps == "epoch":
|
|
output_dir = f"epoch_{epoch}"
|
|
if args.output_dir is not None:
|
|
output_dir = os.path.join(args.output_dir, output_dir)
|
|
accelerator.save_state(output_dir)
|
|
|
|
if args.with_tracking:
|
|
accelerator.end_training()
|
|
|
|
if args.output_dir is not None:
|
|
accelerator.wait_for_everyone()
|
|
unwrapped_model = accelerator.unwrap_model(model)
|
|
unwrapped_model.save_pretrained(
|
|
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
|
|
)
|
|
if accelerator.is_main_process:
|
|
image_processor.save_pretrained(args.output_dir)
|
|
if args.push_to_hub:
|
|
api.upload_folder(
|
|
commit_message="End of training",
|
|
folder_path=args.output_dir,
|
|
repo_id=repo_id,
|
|
repo_type="model",
|
|
token=args.hub_token,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|