452 lines
18 KiB
Python
Executable File
452 lines
18 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
import warnings
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
|
|
import evaluate
|
|
import numpy as np
|
|
import torch
|
|
from datasets import load_dataset
|
|
from PIL import Image
|
|
from torchvision.transforms import (
|
|
CenterCrop,
|
|
Compose,
|
|
Lambda,
|
|
Normalize,
|
|
RandomHorizontalFlip,
|
|
RandomResizedCrop,
|
|
Resize,
|
|
ToTensor,
|
|
)
|
|
|
|
import transformers
|
|
from transformers import (
|
|
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
|
|
AutoConfig,
|
|
AutoImageProcessor,
|
|
AutoModelForImageClassification,
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
set_seed,
|
|
)
|
|
from transformers.trainer_utils import get_last_checkpoint
|
|
from transformers.utils import check_min_version, send_example_telemetry
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
""" Fine-tuning a 🤗 Transformers model for image classification"""
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.41.0.dev0")
|
|
|
|
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
|
|
|
|
MODEL_CONFIG_CLASSES = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
|
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
|
|
|
|
|
def pil_loader(path: str):
|
|
with open(path, "rb") as f:
|
|
im = Image.open(f)
|
|
return im.convert("RGB")
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
|
|
them on the command line.
|
|
"""
|
|
|
|
dataset_name: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
|
|
},
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."})
|
|
validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."})
|
|
train_val_split: Optional[float] = field(
|
|
default=0.15, metadata={"help": "Percent to split off of train for validation."}
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
image_column_name: str = field(
|
|
default="image",
|
|
metadata={"help": "The name of the dataset column containing the image data. Defaults to 'image'."},
|
|
)
|
|
label_column_name: str = field(
|
|
default="label",
|
|
metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'."},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
|
|
raise ValueError(
|
|
"You must specify either a dataset name from the hub or a train and/or validation directory."
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
default="google/vit-base-patch16-224-in21k",
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
|
|
)
|
|
model_type: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
|
|
token: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
|
)
|
|
},
|
|
)
|
|
use_auth_token: bool = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
|
},
|
|
)
|
|
trust_remote_code: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
|
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
|
|
"execute code present on the Hub on your local machine."
|
|
)
|
|
},
|
|
)
|
|
ignore_mismatched_sizes: bool = field(
|
|
default=False,
|
|
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
|
|
)
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
if model_args.use_auth_token is not None:
|
|
warnings.warn(
|
|
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
|
FutureWarning,
|
|
)
|
|
if model_args.token is not None:
|
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
|
model_args.token = model_args.use_auth_token
|
|
|
|
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
|
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
|
send_example_telemetry("run_image_classification", model_args, data_args)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
|
|
if training_args.should_log:
|
|
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
|
transformers.utils.logging.set_verbosity_info()
|
|
|
|
log_level = training_args.get_process_log_level()
|
|
logger.setLevel(log_level)
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
# Log on each process the small summary:
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
|
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
# Detecting last checkpoint.
|
|
last_checkpoint = None
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
# Set seed before initializing model.
|
|
set_seed(training_args.seed)
|
|
|
|
# Initialize our dataset and prepare it for the 'image-classification' task.
|
|
if data_args.dataset_name is not None:
|
|
dataset = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
)
|
|
else:
|
|
data_files = {}
|
|
if data_args.train_dir is not None:
|
|
data_files["train"] = os.path.join(data_args.train_dir, "**")
|
|
if data_args.validation_dir is not None:
|
|
data_files["validation"] = os.path.join(data_args.validation_dir, "**")
|
|
dataset = load_dataset(
|
|
"imagefolder",
|
|
data_files=data_files,
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
|
|
dataset_column_names = dataset["train"].column_names if "train" in dataset else dataset["validation"].column_names
|
|
if data_args.image_column_name not in dataset_column_names:
|
|
raise ValueError(
|
|
f"--image_column_name {data_args.image_column_name} not found in dataset '{data_args.dataset_name}'. "
|
|
"Make sure to set `--image_column_name` to the correct audio column - one of "
|
|
f"{', '.join(dataset_column_names)}."
|
|
)
|
|
if data_args.label_column_name not in dataset_column_names:
|
|
raise ValueError(
|
|
f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. "
|
|
"Make sure to set `--label_column_name` to the correct text column - one of "
|
|
f"{', '.join(dataset_column_names)}."
|
|
)
|
|
|
|
def collate_fn(examples):
|
|
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
|
labels = torch.tensor([example[data_args.label_column_name] for example in examples])
|
|
return {"pixel_values": pixel_values, "labels": labels}
|
|
|
|
# If we don't have a validation split, split off a percentage of train as validation.
|
|
data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split
|
|
if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
|
|
split = dataset["train"].train_test_split(data_args.train_val_split)
|
|
dataset["train"] = split["train"]
|
|
dataset["validation"] = split["test"]
|
|
|
|
# Prepare label mappings.
|
|
# We'll include these in the model's config to get human readable labels in the Inference API.
|
|
labels = dataset["train"].features[data_args.label_column_name].names
|
|
label2id, id2label = {}, {}
|
|
for i, label in enumerate(labels):
|
|
label2id[label] = str(i)
|
|
id2label[str(i)] = label
|
|
|
|
# Load the accuracy metric from the datasets package
|
|
metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
|
|
|
|
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
|
|
# predictions and label_ids field) and has to return a dictionary string to float.
|
|
def compute_metrics(p):
|
|
"""Computes accuracy on a batch of predictions"""
|
|
return metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids)
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name or model_args.model_name_or_path,
|
|
num_labels=len(labels),
|
|
label2id=label2id,
|
|
id2label=id2label,
|
|
finetuning_task="image-classification",
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
model = AutoModelForImageClassification.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
|
|
)
|
|
image_processor = AutoImageProcessor.from_pretrained(
|
|
model_args.image_processor_name or model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
|
|
# Define torchvision transforms to be applied to each image.
|
|
if "shortest_edge" in image_processor.size:
|
|
size = image_processor.size["shortest_edge"]
|
|
else:
|
|
size = (image_processor.size["height"], image_processor.size["width"])
|
|
normalize = (
|
|
Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
|
|
if hasattr(image_processor, "image_mean") and hasattr(image_processor, "image_std")
|
|
else Lambda(lambda x: x)
|
|
)
|
|
_train_transforms = Compose(
|
|
[
|
|
RandomResizedCrop(size),
|
|
RandomHorizontalFlip(),
|
|
ToTensor(),
|
|
normalize,
|
|
]
|
|
)
|
|
_val_transforms = Compose(
|
|
[
|
|
Resize(size),
|
|
CenterCrop(size),
|
|
ToTensor(),
|
|
normalize,
|
|
]
|
|
)
|
|
|
|
def train_transforms(example_batch):
|
|
"""Apply _train_transforms across a batch."""
|
|
example_batch["pixel_values"] = [
|
|
_train_transforms(pil_img.convert("RGB")) for pil_img in example_batch[data_args.image_column_name]
|
|
]
|
|
return example_batch
|
|
|
|
def val_transforms(example_batch):
|
|
"""Apply _val_transforms across a batch."""
|
|
example_batch["pixel_values"] = [
|
|
_val_transforms(pil_img.convert("RGB")) for pil_img in example_batch[data_args.image_column_name]
|
|
]
|
|
return example_batch
|
|
|
|
if training_args.do_train:
|
|
if "train" not in dataset:
|
|
raise ValueError("--do_train requires a train dataset")
|
|
if data_args.max_train_samples is not None:
|
|
dataset["train"] = (
|
|
dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
|
|
)
|
|
# Set the training transforms
|
|
dataset["train"].set_transform(train_transforms)
|
|
|
|
if training_args.do_eval:
|
|
if "validation" not in dataset:
|
|
raise ValueError("--do_eval requires a validation dataset")
|
|
if data_args.max_eval_samples is not None:
|
|
dataset["validation"] = (
|
|
dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
|
|
)
|
|
# Set the validation transforms
|
|
dataset["validation"].set_transform(val_transforms)
|
|
|
|
# Initialize our trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=dataset["train"] if training_args.do_train else None,
|
|
eval_dataset=dataset["validation"] if training_args.do_eval else None,
|
|
compute_metrics=compute_metrics,
|
|
tokenizer=image_processor,
|
|
data_collator=collate_fn,
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
checkpoint = None
|
|
if training_args.resume_from_checkpoint is not None:
|
|
checkpoint = training_args.resume_from_checkpoint
|
|
elif last_checkpoint is not None:
|
|
checkpoint = last_checkpoint
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
trainer.save_model()
|
|
trainer.log_metrics("train", train_result.metrics)
|
|
trainer.save_metrics("train", train_result.metrics)
|
|
trainer.save_state()
|
|
|
|
# Evaluation
|
|
if training_args.do_eval:
|
|
metrics = trainer.evaluate()
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
# Write model card and (optionally) push to hub
|
|
kwargs = {
|
|
"finetuned_from": model_args.model_name_or_path,
|
|
"tasks": "image-classification",
|
|
"dataset": data_args.dataset_name,
|
|
"tags": ["image-classification", "vision"],
|
|
}
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(**kwargs)
|
|
else:
|
|
trainer.create_model_card(**kwargs)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|