4298 lines
218 KiB
Python
4298 lines
218 KiB
Python
# coding=utf-8
|
|
# Copyright 2019 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import inspect
|
|
import itertools
|
|
import json
|
|
import os
|
|
import pickle
|
|
import re
|
|
import shutil
|
|
import tempfile
|
|
import traceback
|
|
import unittest
|
|
from collections import OrderedDict
|
|
from itertools import takewhile
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Union
|
|
|
|
from parameterized import parameterized
|
|
|
|
from transformers import (
|
|
AlbertTokenizer,
|
|
AlbertTokenizerFast,
|
|
BertTokenizer,
|
|
BertTokenizerFast,
|
|
PreTrainedTokenizer,
|
|
PreTrainedTokenizerBase,
|
|
PreTrainedTokenizerFast,
|
|
SpecialTokensMixin,
|
|
Trainer,
|
|
TrainingArguments,
|
|
is_flax_available,
|
|
is_tf_available,
|
|
is_torch_available,
|
|
logging,
|
|
)
|
|
from transformers.testing_utils import (
|
|
check_json_file_has_correct_format,
|
|
get_tests_dir,
|
|
is_pt_tf_cross_test,
|
|
require_jinja,
|
|
require_read_token,
|
|
require_tf,
|
|
require_tokenizers,
|
|
require_torch,
|
|
run_test_in_subprocess,
|
|
slow,
|
|
)
|
|
from transformers.tokenization_utils import AddedToken
|
|
|
|
|
|
if is_torch_available():
|
|
import torch.nn as nn
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PretrainedConfig, PreTrainedModel, TFPreTrainedModel
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
NON_ENGLISH_TAGS = ["chinese", "dutch", "french", "finnish", "german", "multilingual"]
|
|
|
|
SMALL_TRAINING_CORPUS = [
|
|
["This is the first sentence.", "This is the second one."],
|
|
["This sentence (contains #) over symbols and numbers 12 3.", "But not this one."],
|
|
]
|
|
|
|
|
|
def filter_non_english(_, pretrained_name: str):
|
|
"""Filter all the model for non-english language"""
|
|
return not any(lang in pretrained_name for lang in NON_ENGLISH_TAGS)
|
|
|
|
|
|
def filter_roberta_detectors(_, pretrained_name: str):
|
|
return "detector" not in pretrained_name
|
|
|
|
|
|
def merge_model_tokenizer_mappings(
|
|
model_mapping: Dict["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
|
|
tokenizer_mapping: Dict["PretrainedConfig", Tuple["PreTrainedTokenizer", "PreTrainedTokenizerFast"]],
|
|
) -> Dict[
|
|
Union["PreTrainedTokenizer", "PreTrainedTokenizerFast"],
|
|
Tuple["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
|
|
]:
|
|
configurations = list(model_mapping.keys())
|
|
model_tokenizer_mapping = OrderedDict([])
|
|
|
|
for configuration in configurations:
|
|
if configuration in model_mapping and configuration in tokenizer_mapping:
|
|
model = model_mapping[configuration]
|
|
tokenizer = tokenizer_mapping[configuration][0]
|
|
tokenizer_fast = tokenizer_mapping[configuration][1]
|
|
|
|
if tokenizer is not None:
|
|
if configuration.__name__.startswith(tokenizer.__name__.replace("Tokenizer", "")):
|
|
model_tokenizer_mapping.update({tokenizer: (configuration, model)})
|
|
if tokenizer_fast is not None:
|
|
if configuration.__name__.startswith(tokenizer_fast.__name__.replace("TokenizerFast", "")):
|
|
model_tokenizer_mapping.update({tokenizer_fast: (configuration, model)})
|
|
|
|
return model_tokenizer_mapping
|
|
|
|
|
|
def _test_subword_regularization_tokenizer(in_queue, out_queue, timeout):
|
|
error = None
|
|
|
|
try:
|
|
inputs = in_queue.get(timeout=timeout)
|
|
tokenizer = inputs["tokenizer"]
|
|
sp_model_kwargs = inputs["sp_model_kwargs"]
|
|
test_sentencepiece_ignore_case = inputs["test_sentencepiece_ignore_case"]
|
|
|
|
unittest.TestCase().assertTrue(hasattr(tokenizer, "sp_model_kwargs"))
|
|
unittest.TestCase().assertIsNotNone(tokenizer.sp_model_kwargs)
|
|
unittest.TestCase().assertTrue(isinstance(tokenizer.sp_model_kwargs, dict))
|
|
unittest.TestCase().assertDictEqual(tokenizer.sp_model_kwargs, sp_model_kwargs)
|
|
check_subword_sampling(tokenizer, test_sentencepiece_ignore_case=test_sentencepiece_ignore_case)
|
|
|
|
except Exception:
|
|
error = f"{traceback.format_exc()}"
|
|
|
|
results = {"error": error}
|
|
out_queue.put(results, timeout=timeout)
|
|
out_queue.join()
|
|
|
|
|
|
def check_subword_sampling(
|
|
tokenizer: PreTrainedTokenizer,
|
|
text: str = None,
|
|
test_sentencepiece_ignore_case: bool = True,
|
|
) -> None:
|
|
"""
|
|
Check if the tokenizer generates different results when subword regularization is enabled.
|
|
|
|
Subword regularization augments training data with subword sampling.
|
|
This has a random component.
|
|
|
|
Args:
|
|
tokenizer: The tokenizer to check.
|
|
text: The text to use for the checks.
|
|
test_sentencepiece_ignore_case: See `TokenizerTesterMixin.test_sentencepiece_ignore_case`.
|
|
"""
|
|
text = "This is a test for subword regularization." if text is None else text
|
|
if test_sentencepiece_ignore_case:
|
|
text = text.lower()
|
|
|
|
tokens_list = []
|
|
for _ in range(5):
|
|
tokens_list.append(tokenizer.tokenize(text))
|
|
|
|
# the list of different pairs of tokens_list
|
|
combinations = itertools.combinations(tokens_list, 2)
|
|
|
|
# check of sampling is done
|
|
subword_sampling_found = False
|
|
for combination in combinations:
|
|
if combination[0] != combination[1]:
|
|
subword_sampling_found = True
|
|
unittest.TestCase().assertTrue(subword_sampling_found)
|
|
|
|
# check if converting back to original text works
|
|
for tokens in tokens_list:
|
|
if test_sentencepiece_ignore_case:
|
|
unittest.TestCase().assertEqual(text, tokenizer.convert_tokens_to_string(tokens).lower())
|
|
else:
|
|
unittest.TestCase().assertEqual(text, tokenizer.convert_tokens_to_string(tokens))
|
|
|
|
|
|
class TokenizerTesterMixin:
|
|
tokenizer_class = None
|
|
rust_tokenizer_class = None
|
|
test_slow_tokenizer = True
|
|
test_rust_tokenizer = True
|
|
space_between_special_tokens = False
|
|
from_pretrained_kwargs = None
|
|
from_pretrained_filter = None
|
|
from_pretrained_id = None
|
|
from_pretrained_vocab_key = "vocab_file"
|
|
test_seq2seq = True
|
|
|
|
# set to True to test a sentencepiece tokenizer
|
|
test_sentencepiece = False
|
|
|
|
# set to True to ignore casing when testing a sentencepiece tokenizer
|
|
# test_sentencepiece must also be set to True
|
|
test_sentencepiece_ignore_case = False
|
|
|
|
def setUp(self) -> None:
|
|
# Tokenizer.filter makes it possible to filter which Tokenizer to case based on all the
|
|
# information available in Tokenizer (name, rust class, python class, vocab key name)
|
|
self.from_pretrained_id = (
|
|
[self.from_pretrained_id] if isinstance(self.from_pretrained_id, str) else self.from_pretrained_id
|
|
)
|
|
|
|
self.tokenizers_list = []
|
|
if self.test_rust_tokenizer:
|
|
self.tokenizers_list = [
|
|
(
|
|
self.rust_tokenizer_class,
|
|
pretrained_id,
|
|
self.from_pretrained_kwargs if self.from_pretrained_kwargs is not None else {},
|
|
)
|
|
for pretrained_id in self.from_pretrained_id
|
|
]
|
|
else:
|
|
self.tokenizers_list = []
|
|
with open(f"{get_tests_dir()}/fixtures/sample_text.txt", encoding="utf-8") as f_data:
|
|
self._data = f_data.read().replace("\n\n", "\n").strip()
|
|
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def get_input_output_texts(self, tokenizer):
|
|
input_txt = self.get_clean_sequence(tokenizer)[0]
|
|
return input_txt, input_txt
|
|
|
|
def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]:
|
|
# the length of the tokenizer does not always represent the tokens that it can encode: what if there are holes?
|
|
toks = [
|
|
(i, tokenizer.decode([i], clean_up_tokenization_spaces=False)) for i in set(tokenizer.get_vocab().values())
|
|
]
|
|
toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks))
|
|
toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], add_special_tokens=False), toks))
|
|
if max_length is not None and len(toks) > max_length:
|
|
toks = toks[:max_length]
|
|
if min_length is not None and len(toks) < min_length and len(toks) > 0:
|
|
while len(toks) < min_length:
|
|
toks = toks + toks
|
|
# toks_str = [t[1] for t in toks]
|
|
toks_ids = [t[0] for t in toks]
|
|
|
|
# Ensure consistency
|
|
output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False)
|
|
if " " not in output_txt and len(toks_ids) > 1:
|
|
output_txt = (
|
|
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False)
|
|
+ " "
|
|
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False)
|
|
)
|
|
if with_prefix_space:
|
|
output_txt = " " + output_txt
|
|
output_ids = tokenizer.encode(output_txt, add_special_tokens=False)
|
|
return output_txt, output_ids
|
|
|
|
def get_tokenizers(self, fast=True, **kwargs) -> List[PreTrainedTokenizerBase]:
|
|
if fast and self.test_rust_tokenizer and self.test_slow_tokenizer:
|
|
return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)]
|
|
elif fast and self.test_rust_tokenizer:
|
|
return [self.get_rust_tokenizer(**kwargs)]
|
|
elif self.test_slow_tokenizer:
|
|
return [self.get_tokenizer(**kwargs)]
|
|
else:
|
|
raise ValueError("This tokenizer class has no tokenizer to be tested.")
|
|
|
|
def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer:
|
|
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast:
|
|
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def tokenizer_integration_test_util(
|
|
self,
|
|
expected_encoding: Dict,
|
|
model_name: str,
|
|
revision: str = None,
|
|
sequences: List[str] = None,
|
|
decode_kwargs: Dict[str, Any] = None,
|
|
padding: bool = True,
|
|
):
|
|
"""
|
|
Util for integration test.
|
|
|
|
Text is tokenized and then reverted back to text. Both results are then checked.
|
|
|
|
Args:
|
|
expected_encoding:
|
|
The expected result of the tokenizer output.
|
|
model_name:
|
|
The model name of the tokenizer to load and use.
|
|
revision:
|
|
The full git revision number of the model. This is to pin the
|
|
tokenizer config and to avoid that tests start to fail if the
|
|
config gets changed upstream.
|
|
sequences:
|
|
Can overwrite the texts that are used to check the tokenizer.
|
|
This is useful if the tokenizer supports non english languages
|
|
like france.
|
|
decode_kwargs:
|
|
Additional args for the ``decode`` function which reverts the
|
|
tokenized text back to a string.
|
|
padding:
|
|
Activates and controls padding of the tokenizer.
|
|
"""
|
|
decode_kwargs = {} if decode_kwargs is None else decode_kwargs
|
|
|
|
if sequences is None:
|
|
sequences = [
|
|
"Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides "
|
|
"general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural "
|
|
"Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained "
|
|
"models in 100+ languages and deep interoperability between Jax, PyTorch and TensorFlow.",
|
|
"BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly "
|
|
"conditioning on both left and right context in all layers.",
|
|
"The quick brown fox jumps over the lazy dog.",
|
|
]
|
|
|
|
if self.test_sentencepiece_ignore_case:
|
|
sequences = [sequence.lower() for sequence in sequences]
|
|
|
|
tokenizer_classes = [self.tokenizer_class]
|
|
if self.test_rust_tokenizer:
|
|
tokenizer_classes.append(self.rust_tokenizer_class)
|
|
|
|
for tokenizer_class in tokenizer_classes:
|
|
tokenizer = tokenizer_class.from_pretrained(
|
|
model_name,
|
|
revision=revision, # to pin the tokenizer version
|
|
)
|
|
|
|
encoding = tokenizer(sequences, padding=padding)
|
|
decoded_sequences = [
|
|
tokenizer.decode(seq, skip_special_tokens=True, **decode_kwargs) for seq in encoding["input_ids"]
|
|
]
|
|
|
|
encoding_data = encoding.data
|
|
self.assertDictEqual(encoding_data, expected_encoding)
|
|
|
|
for expected, decoded in zip(sequences, decoded_sequences):
|
|
if self.test_sentencepiece_ignore_case:
|
|
expected = expected.lower()
|
|
self.assertEqual(expected, decoded)
|
|
|
|
def assert_padded_input_match(self, input_r: list, input_p: list, max_length: int, pad_token_id: int):
|
|
# Ensure we match max_length
|
|
self.assertEqual(len(input_r), max_length)
|
|
self.assertEqual(len(input_p), max_length)
|
|
|
|
# Ensure the number of padded tokens is the same
|
|
padded_tokens_r = list(takewhile(lambda i: i == pad_token_id, reversed(input_r)))
|
|
padded_tokens_p = list(takewhile(lambda i: i == pad_token_id, reversed(input_p)))
|
|
self.assertSequenceEqual(padded_tokens_r, padded_tokens_p)
|
|
|
|
def assert_batch_padded_input_match(
|
|
self,
|
|
input_r: dict,
|
|
input_p: dict,
|
|
max_length: int,
|
|
pad_token_id: int,
|
|
model_main_input_name: str = "input_ids",
|
|
):
|
|
for i_r in input_r.values():
|
|
(
|
|
self.assertEqual(len(i_r), 2),
|
|
self.assertEqual(len(i_r[0]), max_length),
|
|
self.assertEqual(len(i_r[1]), max_length),
|
|
)
|
|
(
|
|
self.assertEqual(len(i_r), 2),
|
|
self.assertEqual(len(i_r[0]), max_length),
|
|
self.assertEqual(len(i_r[1]), max_length),
|
|
)
|
|
|
|
for i_r, i_p in zip(input_r[model_main_input_name], input_p[model_main_input_name]):
|
|
self.assert_padded_input_match(i_r, i_p, max_length, pad_token_id)
|
|
|
|
for i_r, i_p in zip(input_r["attention_mask"], input_p["attention_mask"]):
|
|
self.assertSequenceEqual(i_r, i_p)
|
|
|
|
@staticmethod
|
|
def convert_batch_encode_plus_format_to_encode_plus(batch_encode_plus_sequences):
|
|
# Switch from batch_encode_plus format: {'input_ids': [[...], [...]], ...}
|
|
# to the list of examples/ encode_plus format: [{'input_ids': [...], ...}, {'input_ids': [...], ...}]
|
|
return [
|
|
{value: batch_encode_plus_sequences[value][i] for value in batch_encode_plus_sequences.keys()}
|
|
for i in range(len(batch_encode_plus_sequences["input_ids"]))
|
|
]
|
|
|
|
# TODO: this test can be combined with `test_sentencepiece_tokenize_and_convert_tokens_to_string` after the latter is extended to all tokenizers.
|
|
def test_tokenize_special_tokens(self):
|
|
"""Test `tokenize` with special tokens."""
|
|
tokenizers = self.get_tokenizers(fast=True, do_lower_case=True)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
SPECIAL_TOKEN_1 = "[SPECIAL_TOKEN_1]"
|
|
SPECIAL_TOKEN_2 = "[SPECIAL_TOKEN_2]"
|
|
|
|
# Both methods should add the token to `_additional_special_tokens` and `added_tokens_decoder`
|
|
tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=True)
|
|
tokenizer.add_special_tokens(
|
|
{"additional_special_tokens": [SPECIAL_TOKEN_2]}, replace_additional_special_tokens=False
|
|
)
|
|
|
|
token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1)
|
|
token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2)
|
|
|
|
self.assertEqual(len(token_1), 1)
|
|
self.assertEqual(len(token_2), 1)
|
|
self.assertEqual(token_1[0], SPECIAL_TOKEN_1)
|
|
# next is failing for almost all the Fast tokenizers now.
|
|
# self.assertEqual(token_2[0], SPECIAL_TOKEN_2)
|
|
|
|
# TODO: this test could be extended to all tokenizers - not just the sentencepiece
|
|
def test_sentencepiece_tokenize_and_convert_tokens_to_string(self):
|
|
"""Test ``_tokenize`` and ``convert_tokens_to_string``."""
|
|
if not self.test_sentencepiece:
|
|
return
|
|
|
|
tokenizer = self.get_tokenizer()
|
|
text = "This is text to test the tokenizer."
|
|
|
|
if self.test_sentencepiece_ignore_case:
|
|
text = text.lower()
|
|
|
|
tokens = tokenizer.tokenize(text)
|
|
|
|
self.assertTrue(len(tokens) > 0)
|
|
|
|
# check if converting back to original text works
|
|
reverse_text = tokenizer.convert_tokens_to_string(tokens)
|
|
|
|
if self.test_sentencepiece_ignore_case:
|
|
reverse_text = reverse_text.lower()
|
|
|
|
self.assertEqual(reverse_text, text)
|
|
|
|
special_tokens = tokenizer.all_special_tokens
|
|
special_tokens_string = tokenizer.convert_tokens_to_string(special_tokens)
|
|
for special_token in special_tokens:
|
|
self.assertIn(special_token, special_tokens_string)
|
|
|
|
if self.test_rust_tokenizer:
|
|
rust_tokenizer = self.get_rust_tokenizer()
|
|
special_tokens_string_rust = rust_tokenizer.convert_tokens_to_string(special_tokens)
|
|
self.assertEqual(special_tokens_string, special_tokens_string_rust)
|
|
|
|
def test_sentencepiece_tokenize_and_decode(self):
|
|
if not self.test_sentencepiece:
|
|
return
|
|
|
|
text = "This is text to test the tokenizer."
|
|
if self.test_rust_tokenizer:
|
|
tokenizer = self.get_tokenizer()
|
|
rust_tokenizer = self.get_rust_tokenizer()
|
|
|
|
slow_ids = tokenizer(text).input_ids
|
|
fast_ids = rust_tokenizer(text).input_ids
|
|
self.assertEqual(slow_ids, fast_ids)
|
|
|
|
slow_decoded = tokenizer.decode(slow_ids)
|
|
fast_decoded = rust_tokenizer.decode(slow_ids)
|
|
self.assertEqual(slow_decoded, fast_decoded)
|
|
|
|
def test_subword_regularization_tokenizer(self) -> None:
|
|
if not self.test_sentencepiece:
|
|
return
|
|
|
|
# Subword regularization is only available for the slow tokenizer.
|
|
sp_model_kwargs = {"enable_sampling": True, "alpha": 0.1, "nbest_size": -1}
|
|
tokenizer = self.get_tokenizer(sp_model_kwargs=sp_model_kwargs)
|
|
|
|
run_test_in_subprocess(
|
|
test_case=self,
|
|
target_func=_test_subword_regularization_tokenizer,
|
|
inputs={
|
|
"tokenizer": tokenizer,
|
|
"sp_model_kwargs": sp_model_kwargs,
|
|
"test_sentencepiece_ignore_case": self.test_sentencepiece_ignore_case,
|
|
},
|
|
)
|
|
|
|
def test_pickle_subword_regularization_tokenizer(self) -> None:
|
|
if not self.test_sentencepiece:
|
|
return
|
|
|
|
"""Google pickle __getstate__ __setstate__ if you are struggling with this."""
|
|
# Subword regularization is only available for the slow tokenizer.
|
|
sp_model_kwargs = {"enable_sampling": True, "alpha": 0.1, "nbest_size": -1}
|
|
tokenizer = self.get_tokenizer(sp_model_kwargs=sp_model_kwargs)
|
|
tokenizer_bin = pickle.dumps(tokenizer)
|
|
del tokenizer
|
|
tokenizer_new = pickle.loads(tokenizer_bin)
|
|
|
|
run_test_in_subprocess(
|
|
test_case=self,
|
|
target_func=_test_subword_regularization_tokenizer,
|
|
inputs={
|
|
"tokenizer": tokenizer_new,
|
|
"sp_model_kwargs": sp_model_kwargs,
|
|
"test_sentencepiece_ignore_case": self.test_sentencepiece_ignore_case,
|
|
},
|
|
)
|
|
|
|
def test_save_sentencepiece_tokenizer(self) -> None:
|
|
if not self.test_sentencepiece or not self.test_slow_tokenizer:
|
|
return
|
|
# We want to verify that we will be able to save the tokenizer even if the original files that were used to
|
|
# build the tokenizer have been deleted in the meantime.
|
|
text = "This is text to test the tokenizer."
|
|
|
|
tokenizer_slow_1 = self.get_tokenizer()
|
|
encoding_tokenizer_slow_1 = tokenizer_slow_1(text)
|
|
|
|
tmpdirname_1 = tempfile.mkdtemp()
|
|
tmpdirname_2 = tempfile.mkdtemp()
|
|
|
|
tokenizer_slow_1.save_pretrained(tmpdirname_1)
|
|
tokenizer_slow_2 = self.tokenizer_class.from_pretrained(tmpdirname_1)
|
|
encoding_tokenizer_slow_2 = tokenizer_slow_2(text)
|
|
|
|
shutil.rmtree(tmpdirname_1)
|
|
tokenizer_slow_2.save_pretrained(tmpdirname_2)
|
|
|
|
tokenizer_slow_3 = self.tokenizer_class.from_pretrained(tmpdirname_2)
|
|
encoding_tokenizer_slow_3 = tokenizer_slow_3(text)
|
|
shutil.rmtree(tmpdirname_2)
|
|
|
|
self.assertEqual(encoding_tokenizer_slow_1, encoding_tokenizer_slow_2)
|
|
self.assertEqual(encoding_tokenizer_slow_1, encoding_tokenizer_slow_3)
|
|
|
|
def test_model_input_names_signature(self):
|
|
accepted_model_main_input_names = [
|
|
"input_ids", # nlp models
|
|
"input_values", # speech models
|
|
]
|
|
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
# first name of model_input_names has to correspond to main model input name
|
|
# to make sure `tokenizer.pad(...)` works correctly
|
|
self.assertTrue(tokenizer.model_input_names[0] in accepted_model_main_input_names)
|
|
|
|
def test_rust_tokenizer_signature(self):
|
|
if not self.test_rust_tokenizer:
|
|
return
|
|
|
|
signature = inspect.signature(self.rust_tokenizer_class.__init__)
|
|
|
|
self.assertIn("tokenizer_file", signature.parameters)
|
|
self.assertIsNone(signature.parameters["tokenizer_file"].default)
|
|
|
|
def test_tokenizer_slow_store_full_signature(self):
|
|
if not self.test_slow_tokenizer:
|
|
return
|
|
|
|
signature = inspect.signature(self.tokenizer_class.__init__)
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
for parameter_name, parameter in signature.parameters.items():
|
|
if parameter.default != inspect.Parameter.empty:
|
|
self.assertIn(parameter_name, tokenizer.init_kwargs)
|
|
|
|
def test_tokenizer_fast_store_full_signature(self):
|
|
if not self.test_rust_tokenizer:
|
|
return
|
|
|
|
signature = inspect.signature(self.rust_tokenizer_class.__init__)
|
|
tokenizer = self.get_rust_tokenizer()
|
|
|
|
for parameter_name, parameter in signature.parameters.items():
|
|
if parameter.default != inspect.Parameter.empty and parameter_name not in [
|
|
"vocab_file",
|
|
"merges_file",
|
|
"tokenizer_file",
|
|
]:
|
|
self.assertIn(parameter_name, tokenizer.init_kwargs)
|
|
|
|
def test_rust_and_python_full_tokenizers(self):
|
|
if not self.test_rust_tokenizer:
|
|
return
|
|
|
|
if not self.test_slow_tokenizer:
|
|
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
|
|
return
|
|
|
|
tokenizer = self.get_tokenizer()
|
|
rust_tokenizer = self.get_rust_tokenizer()
|
|
|
|
sequence, _ = self.get_input_output_texts(tokenizer)
|
|
|
|
# We don't have an exact equivalence on `tokenize()` between Rust and Slow
|
|
# Slow tokenizer only split tokens, Rust tokenizers will replace with <unk>
|
|
# tokens = tokenizer.tokenize(sequence)
|
|
# rust_tokens = rust_tokenizer.tokenize(sequence)
|
|
# self.assertListEqual(tokens, rust_tokens)
|
|
|
|
ids = tokenizer.encode(sequence, add_special_tokens=False)
|
|
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
ids = tokenizer.encode(sequence, add_special_tokens=True)
|
|
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=True)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
def test_tokenizers_common_properties(self):
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
attributes_list = [
|
|
"bos_token",
|
|
"eos_token",
|
|
"unk_token",
|
|
"sep_token",
|
|
"pad_token",
|
|
"cls_token",
|
|
"mask_token",
|
|
]
|
|
for attr in attributes_list:
|
|
self.assertTrue(hasattr(tokenizer, attr))
|
|
self.assertTrue(hasattr(tokenizer, attr + "_id"))
|
|
|
|
self.assertTrue(hasattr(tokenizer, "additional_special_tokens"))
|
|
self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids"))
|
|
|
|
attributes_list = [
|
|
"model_max_length",
|
|
"init_inputs",
|
|
"init_kwargs",
|
|
]
|
|
if not isinstance(tokenizer, PreTrainedTokenizerFast):
|
|
attributes_list += [
|
|
"added_tokens_encoder",
|
|
"added_tokens_decoder",
|
|
]
|
|
for attr in attributes_list:
|
|
self.assertTrue(hasattr(tokenizer, attr))
|
|
|
|
def test_tokenizers_common_ids_setters(self):
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
attributes_list = [
|
|
"bos_token",
|
|
"eos_token",
|
|
"unk_token",
|
|
"sep_token",
|
|
"pad_token",
|
|
"cls_token",
|
|
"mask_token",
|
|
]
|
|
|
|
vocab = tokenizer.get_vocab()
|
|
token_id_to_test_setters = next(iter(vocab.values()))
|
|
token_to_test_setters = tokenizer.convert_ids_to_tokens(
|
|
token_id_to_test_setters, skip_special_tokens=False
|
|
)
|
|
|
|
for attr in attributes_list:
|
|
setattr(tokenizer, attr + "_id", None)
|
|
self.assertEqual(getattr(tokenizer, attr), None)
|
|
self.assertEqual(getattr(tokenizer, attr + "_id"), None)
|
|
|
|
setattr(tokenizer, attr + "_id", token_id_to_test_setters)
|
|
self.assertEqual(getattr(tokenizer, attr), token_to_test_setters)
|
|
self.assertEqual(getattr(tokenizer, attr + "_id"), token_id_to_test_setters)
|
|
|
|
setattr(tokenizer, "additional_special_tokens_ids", [])
|
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [])
|
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [])
|
|
|
|
setattr(tokenizer, "additional_special_tokens_ids", [token_id_to_test_setters])
|
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [token_to_test_setters])
|
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [token_id_to_test_setters])
|
|
|
|
@parameterized.expand([(True,), (False,)])
|
|
def test_tokenizers_special_tokens_properties_unset(self, verbose):
|
|
tokenizers = self.get_tokenizers(verbose=verbose)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
attributes_list = [
|
|
"bos_token",
|
|
"eos_token",
|
|
"unk_token",
|
|
"sep_token",
|
|
"pad_token",
|
|
"cls_token",
|
|
"mask_token",
|
|
"additional_special_tokens",
|
|
]
|
|
for attr in attributes_list:
|
|
setattr(tokenizer, attr, None)
|
|
self.assertIsNone(getattr(tokenizer, attr))
|
|
|
|
def test_save_and_load_tokenizer(self):
|
|
# safety check on max_len default value so we are sure the test works
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
self.assertNotEqual(tokenizer.model_max_length, 42)
|
|
|
|
# Now let's start the test
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
# Isolate this from the other tests because we save additional tokens/etc
|
|
tmpdirname = tempfile.mkdtemp()
|
|
|
|
sample_text = " He is very happy, UNwant\u00E9d,running"
|
|
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
|
|
before_vocab = tokenizer.get_vocab()
|
|
tokenizer.save_pretrained(tmpdirname)
|
|
|
|
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
|
|
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
|
|
after_vocab = after_tokenizer.get_vocab()
|
|
self.assertListEqual(before_tokens, after_tokens)
|
|
self.assertDictEqual(before_vocab, after_vocab)
|
|
|
|
shutil.rmtree(tmpdirname)
|
|
|
|
tokenizers = self.get_tokenizers(model_max_length=42)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
# Isolate this from the other tests because we save additional tokens/etc
|
|
tmpdirname = tempfile.mkdtemp()
|
|
|
|
sample_text = " He is very happy, UNwant\u00E9d,running"
|
|
tokenizer.add_tokens(["bim", "bambam"])
|
|
additional_special_tokens = tokenizer.additional_special_tokens
|
|
additional_special_tokens.append("new_additional_special_token")
|
|
tokenizer.add_special_tokens(
|
|
{"additional_special_tokens": additional_special_tokens}, replace_additional_special_tokens=False
|
|
)
|
|
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
|
|
before_vocab = tokenizer.get_vocab()
|
|
tokenizer.save_pretrained(tmpdirname)
|
|
|
|
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
|
|
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
|
|
after_vocab = after_tokenizer.get_vocab()
|
|
self.assertListEqual(before_tokens, after_tokens)
|
|
|
|
self.assertDictEqual(before_vocab, after_vocab)
|
|
self.assertIn("bim", after_vocab)
|
|
self.assertIn("bambam", after_vocab)
|
|
self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
|
|
self.assertEqual(after_tokenizer.model_max_length, 42)
|
|
|
|
tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
|
|
self.assertEqual(tokenizer.model_max_length, 43)
|
|
|
|
shutil.rmtree(tmpdirname)
|
|
|
|
# Test that we can also use the non-legacy saving format for fast tokenizers
|
|
tokenizers = self.get_tokenizers(model_max_length=42)
|
|
for tokenizer in tokenizers:
|
|
if not tokenizer.is_fast:
|
|
continue
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
# Isolate this from the other tests because we save additional tokens/etc
|
|
tmpdirname = tempfile.mkdtemp()
|
|
|
|
sample_text = " He is very happy, UNwant\u00E9d,running"
|
|
tokenizer.add_tokens(["bim", "bambam"])
|
|
additional_special_tokens = tokenizer.additional_special_tokens
|
|
additional_special_tokens.append("new_additional_special_token")
|
|
tokenizer.add_special_tokens(
|
|
{"additional_special_tokens": additional_special_tokens}, replace_additional_special_tokens=False
|
|
)
|
|
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
|
|
before_vocab = tokenizer.get_vocab()
|
|
tokenizer.save_pretrained(tmpdirname)
|
|
|
|
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
|
|
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
|
|
after_vocab = after_tokenizer.get_vocab()
|
|
self.assertListEqual(before_tokens, after_tokens)
|
|
self.assertDictEqual(before_vocab, after_vocab)
|
|
self.assertIn("bim", after_vocab)
|
|
self.assertIn("bambam", after_vocab)
|
|
self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
|
|
self.assertEqual(after_tokenizer.model_max_length, 42)
|
|
|
|
tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
|
|
self.assertEqual(tokenizer.model_max_length, 43)
|
|
|
|
shutil.rmtree(tmpdirname)
|
|
|
|
def test_pickle_tokenizer(self):
|
|
"""Google pickle __getstate__ __setstate__ if you are struggling with this."""
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
self.assertIsNotNone(tokenizer)
|
|
|
|
text = "Munich and Berlin are nice cities"
|
|
subwords = tokenizer.tokenize(text)
|
|
|
|
filename = os.path.join(self.tmpdirname, "tokenizer.bin")
|
|
with open(filename, "wb") as handle:
|
|
pickle.dump(tokenizer, handle)
|
|
|
|
with open(filename, "rb") as handle:
|
|
tokenizer_new = pickle.load(handle)
|
|
|
|
subwords_loaded = tokenizer_new.tokenize(text)
|
|
|
|
self.assertListEqual(subwords, subwords_loaded)
|
|
|
|
@require_tokenizers
|
|
def test_pickle_added_tokens(self):
|
|
tok1 = AddedToken("<s>", rstrip=True, lstrip=True, normalized=False, single_word=True)
|
|
tok2 = pickle.loads(pickle.dumps(tok1))
|
|
|
|
self.assertEqual(tok1.__getstate__(), tok2.__getstate__())
|
|
|
|
def test_added_tokens_do_lower_case(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=True)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
if not hasattr(tokenizer, "do_lower_case") or not tokenizer.do_lower_case:
|
|
continue
|
|
|
|
special_token = tokenizer.all_special_tokens[0]
|
|
|
|
text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
|
|
text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
|
|
|
|
toks_before_adding = tokenizer.tokenize(text) # toks before adding new_toks
|
|
|
|
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
|
|
added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks])
|
|
|
|
toks_after_adding = tokenizer.tokenize(text)
|
|
toks_after_adding2 = tokenizer.tokenize(text2)
|
|
|
|
# Rust tokenizers dont't lowercase added tokens at the time calling `tokenizer.add_tokens`,
|
|
# while python tokenizers do, so new_toks 0 and 2 would be treated as the same, so do new_toks 1 and 3.
|
|
self.assertIn(added, [2, 4])
|
|
|
|
self.assertListEqual(toks_after_adding, toks_after_adding2)
|
|
self.assertTrue(
|
|
len(toks_before_adding) > len(toks_after_adding), # toks_before_adding should be longer
|
|
)
|
|
|
|
# Check that none of the special tokens are lowercased
|
|
sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B"
|
|
# Convert the tokenized list to str as some special tokens are tokenized like normal tokens
|
|
# which have a prefix spacee e.g. the mask token of Albert, and cannot match the original
|
|
# special tokens exactly.
|
|
tokenized_sequence = "".join(tokenizer.tokenize(sequence_with_special_tokens))
|
|
|
|
for special_token in tokenizer.all_special_tokens:
|
|
self.assertTrue(special_token in tokenized_sequence or special_token.lower() in tokenized_sequence)
|
|
|
|
tokenizers = self.get_tokenizers(do_lower_case=True)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
if hasattr(tokenizer, "do_lower_case") and tokenizer.do_lower_case:
|
|
continue
|
|
|
|
special_token = tokenizer.all_special_tokens[0]
|
|
|
|
text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
|
|
text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
|
|
|
|
toks_before_adding = tokenizer.tokenize(text) # toks before adding new_toks
|
|
|
|
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
|
|
added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks])
|
|
self.assertIn(added, [2, 4])
|
|
|
|
toks_after_adding = tokenizer.tokenize(text)
|
|
toks_after_adding2 = tokenizer.tokenize(text2)
|
|
|
|
self.assertEqual(len(toks_after_adding), len(toks_after_adding2)) # Length should still be the same
|
|
self.assertNotEqual(
|
|
toks_after_adding[1], toks_after_adding2[1]
|
|
) # But at least the first non-special tokens should differ
|
|
self.assertTrue(
|
|
len(toks_before_adding) > len(toks_after_adding), # toks_before_adding should be longer
|
|
)
|
|
|
|
# TODO @ArthurZ Nuke this
|
|
def test_add_tokens_tokenizer(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
vocab_size = tokenizer.vocab_size
|
|
all_size = len(tokenizer)
|
|
|
|
self.assertNotEqual(vocab_size, 0)
|
|
|
|
# We usually have added tokens from the start in tests (but also otherwise) because our vocab fixtures are
|
|
# smaller than the original vocabs - let's not assert this
|
|
# self.assertEqual(vocab_size, all_size)
|
|
|
|
new_toks = [
|
|
AddedToken("aaaaa bbbbbb", rstrip=True, lstrip=True),
|
|
AddedToken("cccccccccdddddddd", rstrip=True, lstrip=True),
|
|
]
|
|
added_toks = tokenizer.add_tokens(new_toks)
|
|
vocab_size_2 = tokenizer.vocab_size
|
|
all_size_2 = len(tokenizer)
|
|
|
|
self.assertNotEqual(vocab_size_2, 0)
|
|
self.assertEqual(vocab_size, vocab_size_2)
|
|
self.assertEqual(added_toks, len(new_toks))
|
|
self.assertEqual(all_size_2, all_size + len(new_toks))
|
|
|
|
tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)
|
|
|
|
self.assertGreaterEqual(len(tokens), 4)
|
|
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
|
|
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
|
|
|
|
new_toks_2 = {
|
|
"eos_token": AddedToken(">>>>|||<||<<|<<", rstrip=True, lstrip=True),
|
|
"pad_token": AddedToken("<<<<<|||>|>>>>|>", rstrip=True, lstrip=True),
|
|
}
|
|
added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
|
|
vocab_size_3 = tokenizer.vocab_size
|
|
all_size_3 = len(tokenizer)
|
|
|
|
self.assertNotEqual(vocab_size_3, 0)
|
|
self.assertEqual(vocab_size, vocab_size_3)
|
|
self.assertEqual(added_toks_2, len(new_toks_2))
|
|
self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
|
|
|
|
tokens = tokenizer.encode(
|
|
">>>>|||<||<<|<< aaaaa bbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False
|
|
)
|
|
|
|
self.assertGreaterEqual(len(tokens), 6)
|
|
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
|
|
self.assertGreater(tokens[0], tokens[1])
|
|
|
|
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
|
|
self.assertGreater(tokens[-2], tokens[-3])
|
|
self.assertEqual(tokens[0], tokenizer.eos_token_id)
|
|
self.assertEqual(tokens[-2], tokenizer.pad_token_id)
|
|
|
|
def test_add_special_tokens(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
input_text, ids = self.get_clean_sequence(tokenizer)
|
|
|
|
special_token = AddedToken("[SPECIAL_TOKEN]", lstrip=True, rstrip=True)
|
|
|
|
tokenizer.add_special_tokens({"cls_token": special_token})
|
|
special_token = str(special_token)
|
|
encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False)
|
|
self.assertEqual(len(encoded_special_token), 1)
|
|
|
|
text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False)
|
|
encoded = tokenizer.encode(text, add_special_tokens=False)
|
|
|
|
input_encoded = tokenizer.encode(input_text, add_special_tokens=False)
|
|
special_token_id = tokenizer.encode(special_token, add_special_tokens=False)
|
|
self.assertEqual(encoded, input_encoded + special_token_id)
|
|
|
|
decoded = tokenizer.decode(encoded, skip_special_tokens=True)
|
|
self.assertTrue(special_token not in decoded)
|
|
|
|
def test_internal_consistency(self):
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
input_text, output_text = self.get_input_output_texts(tokenizer)
|
|
|
|
tokens = tokenizer.tokenize(input_text)
|
|
ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
ids_2 = tokenizer.encode(input_text, add_special_tokens=False)
|
|
self.assertListEqual(ids, ids_2)
|
|
|
|
tokens_2 = tokenizer.convert_ids_to_tokens(ids)
|
|
self.assertNotEqual(len(tokens_2), 0)
|
|
text_2 = tokenizer.decode(ids)
|
|
self.assertIsInstance(text_2, str)
|
|
|
|
self.assertEqual(text_2, output_text)
|
|
|
|
@require_tokenizers
|
|
def test_encode_decode_with_spaces(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False, fast=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
new_toks = [
|
|
# These are added tokens, they will be normalized....
|
|
AddedToken("[ABC]", normalized=True, lstrip=True, rstrip=True),
|
|
AddedToken("[DEF]", normalized=True, lstrip=True, rstrip=True),
|
|
AddedToken("GHI IHG", normalized=True, lstrip=True, rstrip=True),
|
|
]
|
|
tokenizer.add_tokens(new_toks)
|
|
tokenizer.add_tokens([AddedToken("[SAMPLE]", normalized=True)], special_tokens=True)
|
|
input = "[ABC][DEF][ABC]GHI IHG[DEF]"
|
|
if self.space_between_special_tokens:
|
|
output = "[ABC] [DEF] [ABC] GHI IHG [DEF]"
|
|
else:
|
|
output = input
|
|
encoded = tokenizer.encode(input, add_special_tokens=False)
|
|
decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens)
|
|
|
|
self.assertIn(decoded, [output, output.lower()])
|
|
return
|
|
# TODO @ArthurZ Refactor testing as now the do_normalize works for special and non special
|
|
encoded = tokenizer.encode("[ABC] [DEF][SAMPLE]", add_special_tokens=False)
|
|
decoded = tokenizer.decode(encoded, spaces_between_special_tokens=True, skip_special_tokens=False)
|
|
self.assertIn(decoded, ["[ABC] [DEF] [SAMPLE]", "[ABC] [DEF] [SAMPLE]".lower()])
|
|
|
|
decoded = tokenizer.decode(encoded, spaces_between_special_tokens=True, skip_special_tokens=True)
|
|
self.assertIn(decoded, ["[ABC] [DEF]", "[ABC] [DEF]".lower()])
|
|
|
|
encoded = tokenizer.encode("[ABC][SAMPLE][DEF]", add_special_tokens=False)
|
|
decoded = tokenizer.decode(encoded, spaces_between_special_tokens=True)
|
|
self.assertIn(decoded, ["[ABC] [SAMPLE] [DEF]", "[ABC][SAMPLE][DEF]".lower()])
|
|
|
|
decoded = tokenizer.decode(encoded, spaces_between_special_tokens=False)
|
|
self.assertIn(decoded, ["[ABC][SAMPLE][DEF]", "[ABC][SAMPLE][DEF]".lower()])
|
|
|
|
def test_mask_output(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
if (
|
|
tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer"
|
|
and "token_type_ids" in tokenizer.model_input_names
|
|
):
|
|
seq_0 = "Test this method."
|
|
seq_1 = "With these inputs."
|
|
information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True)
|
|
sequences, mask = information["input_ids"], information["token_type_ids"]
|
|
self.assertEqual(len(sequences), len(mask))
|
|
|
|
def test_token_type_ids(self):
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
seq_0 = "Test this method."
|
|
|
|
# We want to have sequence 0 and sequence 1 are tagged
|
|
# respectively with 0 and 1 token_ids
|
|
# (regardless of whether the model use token type ids)
|
|
# We use this assumption in the QA pipeline among other place
|
|
output = tokenizer(seq_0, return_token_type_ids=True)
|
|
self.assertIn(0, output["token_type_ids"])
|
|
|
|
def test_sequence_ids(self):
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
if not tokenizer.is_fast:
|
|
continue
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
seq_0 = "Test this method."
|
|
seq_1 = "With these inputs."
|
|
|
|
# We want to have sequence 0 and sequence 1 are tagged
|
|
# respectively with 0 and 1 token_ids
|
|
# (regardless of whether the model use token type ids)
|
|
# We use this assumption in the QA pipeline among other place
|
|
output = tokenizer(seq_0)
|
|
self.assertIn(0, output.sequence_ids())
|
|
|
|
output = tokenizer(seq_0, seq_1)
|
|
self.assertIn(0, output.sequence_ids())
|
|
self.assertIn(1, output.sequence_ids())
|
|
|
|
if tokenizer.num_special_tokens_to_add(pair=True):
|
|
self.assertIn(None, output.sequence_ids())
|
|
|
|
@require_jinja
|
|
def test_chat_template(self):
|
|
dummy_template = "{% for message in messages %}{{message['role'] + message['content']}}{% endfor %}"
|
|
dummy_conversation = [
|
|
{"role": "system", "content": "system message"},
|
|
{"role": "user", "content": "user message"},
|
|
{"role": "assistant", "content": "assistant message"},
|
|
]
|
|
expected_output = "systemsystem messageuseruser messageassistantassistant message"
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
output = tokenizer.apply_chat_template(
|
|
dummy_conversation, chat_template=dummy_template, tokenize=False, return_dict=False
|
|
)
|
|
self.assertEqual(output, expected_output) # Test we can pass chat_template arg
|
|
|
|
# Check that no error raised when tokenize=True
|
|
output = tokenizer.apply_chat_template(
|
|
dummy_conversation, chat_template=dummy_template, tokenize=True, return_dict=False
|
|
)
|
|
dict_output = tokenizer.apply_chat_template(
|
|
dummy_conversation, chat_template=dummy_template, tokenize=True, return_dict=True
|
|
)
|
|
self.assertEqual(dict_output["input_ids"], output) # Test return_dict behaviour matches
|
|
|
|
tokenizer.chat_template = dummy_template
|
|
self.assertEqual(tokenizer.chat_template, dummy_template) # Test property setter
|
|
output = tokenizer.apply_chat_template(dummy_conversation, tokenize=False, return_dict=False)
|
|
self.assertEqual(output, expected_output) # Test chat_template attribute is used if no arg is passed
|
|
# Check that no error raised
|
|
tokenizer.apply_chat_template(dummy_conversation, tokenize=True, return_dict=False)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
tokenizer.save_pretrained(tmp_dir_name)
|
|
tokenizer = tokenizer.from_pretrained(tmp_dir_name)
|
|
|
|
self.assertEqual(tokenizer.chat_template, dummy_template) # Test template has persisted
|
|
output = tokenizer.apply_chat_template(dummy_conversation, tokenize=False, return_dict=False)
|
|
self.assertEqual(output, expected_output) # Test output is the same after reloading
|
|
# Check that no error raised
|
|
tokenizer.apply_chat_template(dummy_conversation, tokenize=True, return_dict=False)
|
|
|
|
@require_jinja
|
|
def test_chat_template_batched(self):
|
|
dummy_template = "{% for message in messages %}{{message['role'] + message['content']}}{% endfor %}"
|
|
dummy_conversations = [
|
|
[
|
|
{"role": "system", "content": "system message"},
|
|
{"role": "user", "content": "user message"},
|
|
{"role": "assistant", "content": "assistant message"},
|
|
],
|
|
[
|
|
{"role": "system", "content": "system message 2"},
|
|
{"role": "user", "content": "user message 2"},
|
|
{"role": "assistant", "content": "assistant message 2"},
|
|
],
|
|
]
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
output = tokenizer.apply_chat_template(
|
|
dummy_conversations, chat_template=dummy_template, tokenize=False
|
|
)
|
|
self.assertEqual(
|
|
output,
|
|
[
|
|
"systemsystem messageuseruser messageassistantassistant message",
|
|
"systemsystem message 2useruser message 2assistantassistant message 2",
|
|
],
|
|
)
|
|
one_element_output = tokenizer.apply_chat_template(
|
|
dummy_conversations[:1], chat_template=dummy_template, tokenize=False
|
|
)
|
|
self.assertEqual(
|
|
one_element_output, ["systemsystem messageuseruser messageassistantassistant message"]
|
|
) # Assert that list structure is retained even with one element
|
|
tokenizer.apply_chat_template(
|
|
dummy_conversations, chat_template=dummy_template, tokenize=True
|
|
) # Check that no error raised
|
|
|
|
@require_jinja
|
|
def test_chat_template_dict(self):
|
|
dummy_template_1 = "{{'a'}}"
|
|
dummy_template_2 = "{{'b'}}"
|
|
dummy_conversation = [
|
|
{"role": "user", "content": "user message"},
|
|
]
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
tokenizer.chat_template = {"template1": dummy_template_1, "template2": dummy_template_2}
|
|
output1 = tokenizer.apply_chat_template(
|
|
dummy_conversation, chat_template=dummy_template_1, tokenize=False
|
|
)
|
|
output1_via_dict = tokenizer.apply_chat_template(
|
|
dummy_conversation, chat_template="template1", tokenize=False
|
|
)
|
|
self.assertEqual(output1, output1_via_dict)
|
|
output2 = tokenizer.apply_chat_template(
|
|
dummy_conversation, chat_template=dummy_template_2, tokenize=False
|
|
)
|
|
output2_via_dict = tokenizer.apply_chat_template(
|
|
dummy_conversation, chat_template="template2", tokenize=False
|
|
)
|
|
self.assertEqual(output2, output2_via_dict)
|
|
|
|
@require_jinja
|
|
def test_chat_template_dict_saving(self):
|
|
dummy_template_1 = "{{'a'}}"
|
|
dummy_template_2 = "{{'b'}}"
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
tokenizer.chat_template = {"template1": dummy_template_1, "template2": dummy_template_2}
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
tokenizer.save_pretrained(tmp_dir_name)
|
|
config_dict = json.load(open(os.path.join(tmp_dir_name, "tokenizer_config.json")))
|
|
# Assert that chat templates are correctly serialized as lists of dictionaries
|
|
self.assertEqual(
|
|
config_dict["chat_template"],
|
|
[{"name": "template1", "template": "{{'a'}}"}, {"name": "template2", "template": "{{'b'}}"}],
|
|
)
|
|
new_tokenizer = tokenizer.from_pretrained(tmp_dir_name)
|
|
# Assert that the serialized list is correctly reconstructed as a single dict
|
|
self.assertEqual(new_tokenizer.chat_template, tokenizer.chat_template)
|
|
|
|
def test_number_of_added_tokens(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
seq_0 = "Test this method."
|
|
seq_1 = "With these inputs."
|
|
|
|
sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)
|
|
attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True)
|
|
|
|
# Method is implemented (e.g. not GPT-2)
|
|
if len(attached_sequences) != 2:
|
|
self.assertEqual(
|
|
tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences)
|
|
)
|
|
|
|
def test_maximum_encoding_length_single_input(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20)
|
|
|
|
sequence = tokenizer.encode(seq_0, add_special_tokens=False)
|
|
total_length = len(sequence)
|
|
|
|
self.assertGreater(
|
|
total_length, 4, "Issue with the testing sequence, please update it, it's too short"
|
|
)
|
|
|
|
# Test with max model input length
|
|
model_max_length = tokenizer.model_max_length
|
|
self.assertEqual(model_max_length, 100)
|
|
seq_1 = seq_0 * model_max_length
|
|
|
|
sequence1 = tokenizer(seq_1, add_special_tokens=False)
|
|
total_length1 = len(sequence1["input_ids"])
|
|
self.assertGreater(
|
|
total_length1,
|
|
model_max_length,
|
|
"Issue with the testing sequence, please update it, it's too short",
|
|
)
|
|
|
|
# Simple
|
|
padding_strategies = (
|
|
[False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False]
|
|
)
|
|
for padding_state in padding_strategies:
|
|
with self.subTest(f"Padding: {padding_state}"):
|
|
for truncation_state in [True, "longest_first", "only_first"]:
|
|
with self.subTest(f"Truncation: {truncation_state}"):
|
|
output = tokenizer(seq_1, padding=padding_state, truncation=truncation_state)
|
|
self.assertEqual(len(output["input_ids"]), model_max_length)
|
|
|
|
output = tokenizer([seq_1], padding=padding_state, truncation=truncation_state)
|
|
self.assertEqual(len(output["input_ids"][0]), model_max_length)
|
|
|
|
# Simple with no truncation
|
|
# Reset warnings
|
|
tokenizer.deprecation_warnings = {}
|
|
with self.assertLogs("transformers", level="WARNING") as cm:
|
|
output = tokenizer(seq_1, padding=padding_state, truncation=False)
|
|
self.assertNotEqual(len(output["input_ids"]), model_max_length)
|
|
self.assertEqual(len(cm.records), 1)
|
|
self.assertTrue(
|
|
cm.records[0].message.startswith(
|
|
"Token indices sequence length is longer than the specified maximum sequence length"
|
|
" for this model"
|
|
)
|
|
)
|
|
|
|
tokenizer.deprecation_warnings = {}
|
|
with self.assertLogs("transformers", level="WARNING") as cm:
|
|
output = tokenizer([seq_1], padding=padding_state, truncation=False)
|
|
self.assertNotEqual(len(output["input_ids"][0]), model_max_length)
|
|
self.assertEqual(len(cm.records), 1)
|
|
self.assertTrue(
|
|
cm.records[0].message.startswith(
|
|
"Token indices sequence length is longer than the specified maximum sequence length"
|
|
" for this model"
|
|
)
|
|
)
|
|
|
|
# Overflowing tokens
|
|
stride = 2
|
|
information = tokenizer(
|
|
seq_0,
|
|
max_length=total_length - 2,
|
|
add_special_tokens=False,
|
|
stride=stride,
|
|
truncation="longest_first",
|
|
return_overflowing_tokens=True,
|
|
# add_prefix_space=False,
|
|
)
|
|
|
|
# Overflowing tokens are handled quite differently in slow and fast tokenizers
|
|
if isinstance(tokenizer, PreTrainedTokenizerFast):
|
|
truncated_sequence = information["input_ids"][0]
|
|
overflowing_tokens = information["input_ids"][1]
|
|
self.assertEqual(len(information["input_ids"]), 2)
|
|
|
|
self.assertEqual(len(truncated_sequence), total_length - 2)
|
|
self.assertEqual(truncated_sequence, sequence[:-2])
|
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride)
|
|
self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
|
|
else:
|
|
truncated_sequence = information["input_ids"]
|
|
overflowing_tokens = information["overflowing_tokens"]
|
|
|
|
self.assertEqual(len(truncated_sequence), total_length - 2)
|
|
self.assertEqual(truncated_sequence, sequence[:-2])
|
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride)
|
|
self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
|
|
|
|
def test_maximum_encoding_length_pair_input(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
# Build a sequence from our model's vocabulary
|
|
stride = 2
|
|
seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20)
|
|
if len(ids) <= 2 + stride:
|
|
seq_0 = (seq_0 + " ") * (2 + stride)
|
|
ids = None
|
|
|
|
seq0_tokens = tokenizer.encode(seq_0, add_special_tokens=False)
|
|
self.assertGreater(len(seq0_tokens), 2 + stride)
|
|
|
|
seq_1 = "This is another sentence to be encoded."
|
|
seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False)
|
|
if abs(len(seq0_tokens) - len(seq1_tokens)) <= 2:
|
|
seq1_tokens = seq1_tokens + seq1_tokens
|
|
seq_1 = tokenizer.decode(seq1_tokens, clean_up_tokenization_spaces=False)
|
|
seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False)
|
|
|
|
self.assertGreater(len(seq1_tokens), 2 + stride)
|
|
|
|
smallest = seq1_tokens if len(seq0_tokens) > len(seq1_tokens) else seq0_tokens
|
|
|
|
# We are not using the special tokens - a bit too hard to test all the tokenizers with this
|
|
# TODO try this again later
|
|
sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=False) # , add_prefix_space=False)
|
|
|
|
# Test with max model input length
|
|
model_max_length = tokenizer.model_max_length
|
|
self.assertEqual(model_max_length, 100)
|
|
seq_2 = seq_0 * model_max_length
|
|
self.assertGreater(len(seq_2), model_max_length)
|
|
|
|
sequence1 = tokenizer(seq_1, add_special_tokens=False)
|
|
total_length1 = len(sequence1["input_ids"])
|
|
sequence2 = tokenizer(seq_2, seq_1, add_special_tokens=False)
|
|
total_length2 = len(sequence2["input_ids"])
|
|
self.assertLess(
|
|
total_length1, model_max_length - 10, "Issue with the testing sequence, please update it."
|
|
)
|
|
self.assertGreater(
|
|
total_length2, model_max_length, "Issue with the testing sequence, please update it."
|
|
)
|
|
|
|
# Simple
|
|
padding_strategies = (
|
|
[False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False]
|
|
)
|
|
for padding_state in padding_strategies:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} Padding: {padding_state}"):
|
|
for truncation_state in [True, "longest_first", "only_first"]:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} Truncation: {truncation_state}"):
|
|
output = tokenizer(seq_2, seq_1, padding=padding_state, truncation=truncation_state)
|
|
self.assertEqual(len(output["input_ids"]), model_max_length)
|
|
|
|
output = tokenizer(
|
|
[seq_2], [seq_1], padding=padding_state, truncation=truncation_state
|
|
)
|
|
self.assertEqual(len(output["input_ids"][0]), model_max_length)
|
|
|
|
# Simple
|
|
output = tokenizer(seq_1, seq_2, padding=padding_state, truncation="only_second")
|
|
self.assertEqual(len(output["input_ids"]), model_max_length)
|
|
|
|
output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation="only_second")
|
|
self.assertEqual(len(output["input_ids"][0]), model_max_length)
|
|
|
|
# Simple with no truncation
|
|
# Reset warnings
|
|
tokenizer.deprecation_warnings = {}
|
|
with self.assertLogs("transformers", level="WARNING") as cm:
|
|
output = tokenizer(seq_1, seq_2, padding=padding_state, truncation=False)
|
|
self.assertNotEqual(len(output["input_ids"]), model_max_length)
|
|
self.assertEqual(len(cm.records), 1)
|
|
self.assertTrue(
|
|
cm.records[0].message.startswith(
|
|
"Token indices sequence length is longer than the specified maximum sequence length"
|
|
" for this model"
|
|
)
|
|
)
|
|
|
|
tokenizer.deprecation_warnings = {}
|
|
with self.assertLogs("transformers", level="WARNING") as cm:
|
|
output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation=False)
|
|
self.assertNotEqual(len(output["input_ids"][0]), model_max_length)
|
|
self.assertEqual(len(cm.records), 1)
|
|
self.assertTrue(
|
|
cm.records[0].message.startswith(
|
|
"Token indices sequence length is longer than the specified maximum sequence length"
|
|
" for this model"
|
|
)
|
|
)
|
|
|
|
truncated_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[:-2] + tokenizer.encode(
|
|
seq_1, add_special_tokens=False
|
|
)
|
|
truncated_second_sequence = (
|
|
tokenizer.encode(seq_0, add_special_tokens=False)
|
|
+ tokenizer.encode(seq_1, add_special_tokens=False)[:-2]
|
|
)
|
|
truncated_longest_sequence = (
|
|
truncated_first_sequence if len(seq0_tokens) > len(seq1_tokens) else truncated_second_sequence
|
|
)
|
|
|
|
overflow_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[
|
|
-(2 + stride) :
|
|
] + tokenizer.encode(seq_1, add_special_tokens=False)
|
|
overflow_second_sequence = (
|
|
tokenizer.encode(seq_0, add_special_tokens=False)
|
|
+ tokenizer.encode(seq_1, add_special_tokens=False)[-(2 + stride) :]
|
|
)
|
|
overflow_longest_sequence = (
|
|
overflow_first_sequence if len(seq0_tokens) > len(seq1_tokens) else overflow_second_sequence
|
|
)
|
|
|
|
# Overflowing tokens are handled quite differently in slow and fast tokenizers
|
|
if isinstance(tokenizer, PreTrainedTokenizerFast):
|
|
information = tokenizer(
|
|
seq_0,
|
|
seq_1,
|
|
max_length=len(sequence) - 2,
|
|
add_special_tokens=False,
|
|
stride=stride,
|
|
truncation="longest_first",
|
|
return_overflowing_tokens=True,
|
|
# add_prefix_space=False,
|
|
)
|
|
truncated_sequence = information["input_ids"][0]
|
|
overflowing_tokens = information["input_ids"][1]
|
|
self.assertEqual(len(information["input_ids"]), 2)
|
|
|
|
self.assertEqual(len(truncated_sequence), len(sequence) - 2)
|
|
self.assertEqual(truncated_sequence, truncated_longest_sequence)
|
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest))
|
|
self.assertEqual(overflowing_tokens, overflow_longest_sequence)
|
|
else:
|
|
# No overflowing tokens when using 'longest' in python tokenizers
|
|
with self.assertRaises(ValueError) as context:
|
|
information = tokenizer(
|
|
seq_0,
|
|
seq_1,
|
|
max_length=len(sequence) - 2,
|
|
add_special_tokens=False,
|
|
stride=stride,
|
|
truncation="longest_first",
|
|
return_overflowing_tokens=True,
|
|
# add_prefix_space=False,
|
|
)
|
|
|
|
self.assertTrue(
|
|
context.exception.args[0].startswith(
|
|
"Not possible to return overflowing tokens for pair of sequences with the "
|
|
"`longest_first`. Please select another truncation strategy than `longest_first`, "
|
|
"for instance `only_second` or `only_first`."
|
|
)
|
|
)
|
|
|
|
# Overflowing tokens are handled quite differently in slow and fast tokenizers
|
|
if isinstance(tokenizer, PreTrainedTokenizerFast):
|
|
information = tokenizer(
|
|
seq_0,
|
|
seq_1,
|
|
max_length=len(sequence) - 2,
|
|
add_special_tokens=False,
|
|
stride=stride,
|
|
truncation=True,
|
|
return_overflowing_tokens=True,
|
|
# add_prefix_space=False,
|
|
)
|
|
truncated_sequence = information["input_ids"][0]
|
|
overflowing_tokens = information["input_ids"][1]
|
|
self.assertEqual(len(information["input_ids"]), 2)
|
|
|
|
self.assertEqual(len(truncated_sequence), len(sequence) - 2)
|
|
self.assertEqual(truncated_sequence, truncated_longest_sequence)
|
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest))
|
|
self.assertEqual(overflowing_tokens, overflow_longest_sequence)
|
|
else:
|
|
# No overflowing tokens when using 'longest' in python tokenizers
|
|
with self.assertRaises(ValueError) as context:
|
|
information = tokenizer(
|
|
seq_0,
|
|
seq_1,
|
|
max_length=len(sequence) - 2,
|
|
add_special_tokens=False,
|
|
stride=stride,
|
|
truncation=True,
|
|
return_overflowing_tokens=True,
|
|
# add_prefix_space=False,
|
|
)
|
|
|
|
self.assertTrue(
|
|
context.exception.args[0].startswith(
|
|
"Not possible to return overflowing tokens for pair of sequences with the "
|
|
"`longest_first`. Please select another truncation strategy than `longest_first`, "
|
|
"for instance `only_second` or `only_first`."
|
|
)
|
|
)
|
|
|
|
information_first_truncated = tokenizer(
|
|
seq_0,
|
|
seq_1,
|
|
max_length=len(sequence) - 2,
|
|
add_special_tokens=False,
|
|
stride=stride,
|
|
truncation="only_first",
|
|
return_overflowing_tokens=True,
|
|
# add_prefix_space=False,
|
|
)
|
|
# Overflowing tokens are handled quite differently in slow and fast tokenizers
|
|
if isinstance(tokenizer, PreTrainedTokenizerFast):
|
|
truncated_sequence = information_first_truncated["input_ids"][0]
|
|
overflowing_tokens = information_first_truncated["input_ids"][1]
|
|
self.assertEqual(len(information_first_truncated["input_ids"]), 2)
|
|
|
|
self.assertEqual(len(truncated_sequence), len(sequence) - 2)
|
|
self.assertEqual(truncated_sequence, truncated_first_sequence)
|
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq1_tokens))
|
|
self.assertEqual(overflowing_tokens, overflow_first_sequence)
|
|
else:
|
|
truncated_sequence = information_first_truncated["input_ids"]
|
|
overflowing_tokens = information_first_truncated["overflowing_tokens"]
|
|
|
|
self.assertEqual(len(truncated_sequence), len(sequence) - 2)
|
|
self.assertEqual(truncated_sequence, truncated_first_sequence)
|
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride)
|
|
self.assertEqual(overflowing_tokens, seq0_tokens[-(2 + stride) :])
|
|
|
|
information_second_truncated = tokenizer(
|
|
seq_0,
|
|
seq_1,
|
|
max_length=len(sequence) - 2,
|
|
add_special_tokens=False,
|
|
stride=stride,
|
|
truncation="only_second",
|
|
return_overflowing_tokens=True,
|
|
# add_prefix_space=False,
|
|
)
|
|
# Overflowing tokens are handled quite differently in slow and fast tokenizers
|
|
if isinstance(tokenizer, PreTrainedTokenizerFast):
|
|
truncated_sequence = information_second_truncated["input_ids"][0]
|
|
overflowing_tokens = information_second_truncated["input_ids"][1]
|
|
self.assertEqual(len(information_second_truncated["input_ids"]), 2)
|
|
|
|
self.assertEqual(len(truncated_sequence), len(sequence) - 2)
|
|
self.assertEqual(truncated_sequence, truncated_second_sequence)
|
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq0_tokens))
|
|
self.assertEqual(overflowing_tokens, overflow_second_sequence)
|
|
else:
|
|
truncated_sequence = information_second_truncated["input_ids"]
|
|
overflowing_tokens = information_second_truncated["overflowing_tokens"]
|
|
|
|
self.assertEqual(len(truncated_sequence), len(sequence) - 2)
|
|
self.assertEqual(truncated_sequence, truncated_second_sequence)
|
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride)
|
|
self.assertEqual(overflowing_tokens, seq1_tokens[-(2 + stride) :])
|
|
|
|
# TODO: FIXME @ArthurZucker
|
|
@unittest.skip(
|
|
reason="start to fail after # 29473. See https://github.com/huggingface/transformers/pull/29473#pullrequestreview-1945687810"
|
|
)
|
|
@slow
|
|
@require_read_token
|
|
def test_encode_decode_fast_slow_all_tokens(self):
|
|
if self.rust_tokenizer_class is not None:
|
|
pretrained_name = self.from_pretrained_id
|
|
|
|
slow_tokenizer = self.tokenizer_class.from_pretrained(pretrained_name, legacy=False)
|
|
with self.subTest(f"{pretrained_name}"):
|
|
rust_tokenizer = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, from_slow=True, legacy=False
|
|
)
|
|
input_full_vocab_ids = list(
|
|
range(len(slow_tokenizer))
|
|
) # TODO let's maybe shuffle this! And run it 4 times. This way we cover more cmbinations
|
|
input_full_vocab_string = rust_tokenizer.convert_tokens_to_string(
|
|
rust_tokenizer.convert_ids_to_tokens(input_full_vocab_ids)
|
|
)
|
|
print(f"Length of the input string that is tested: {len(input_full_vocab_string)}")
|
|
|
|
for chunk in range(0, len(input_full_vocab_string) - 1024, 1024):
|
|
string_to_check = input_full_vocab_string[chunk : chunk + 1024]
|
|
with self.subTest(f"{(chunk/len(input_full_vocab_string))*100}%"):
|
|
slow_encode = slow_tokenizer.encode(string_to_check)
|
|
fast_encode = rust_tokenizer.encode(string_to_check)
|
|
self.assertEqual(
|
|
slow_encode,
|
|
fast_encode,
|
|
"Hint: the following tokenization diff were obtained for slow vs fast:\n "
|
|
f"elements in slow: {set(slow_tokenizer.tokenize(string_to_check))-set(rust_tokenizer.tokenize(string_to_check))} \nvs\n "
|
|
f"elements in fast: {set(rust_tokenizer.tokenize(string_to_check))-set(slow_tokenizer.tokenize(string_to_check))} \n"
|
|
f"string used : {string_to_check}",
|
|
)
|
|
print(f"Length of the input ids that is tested: {len(input_full_vocab_ids)}")
|
|
for chunk in range(0, len(input_full_vocab_ids) - 100, 100):
|
|
ids_to_decode = input_full_vocab_ids[chunk : chunk + 100]
|
|
with self.subTest(f"{(chunk/len(input_full_vocab_string))*100}%"):
|
|
self.assertEqual(
|
|
slow_tokenizer.decode(
|
|
ids_to_decode,
|
|
space_between_special_tokens=False,
|
|
clean_up_tokenization_spaces=False,
|
|
),
|
|
rust_tokenizer.decode(
|
|
ids_to_decode,
|
|
space_between_special_tokens=False,
|
|
clean_up_tokenization_spaces=False,
|
|
),
|
|
f"Hint here are the tokens being decoded.: {slow_tokenizer.convert_ids_to_tokens(ids_to_decode)}",
|
|
)
|
|
|
|
# def test_encode_input_type(self):
|
|
# tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
# for tokenizer in tokenizers:
|
|
# with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
# sequence = "Let's encode this sequence"
|
|
|
|
# tokens = sequence.split() # tokenizer.tokenize(sequence)
|
|
# # input_ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
# formatted_input = tokenizer.encode(sequence, add_special_tokens=True, add_prefix_space=False)
|
|
|
|
# self.assertEqual(
|
|
# tokenizer.encode(tokens, is_split_into_words=True, add_special_tokens=True), formatted_input
|
|
# )
|
|
# # This is not supported with the Rust tokenizers
|
|
# # self.assertEqual(tokenizer.encode(input_ids, add_special_tokens=True), formatted_input)
|
|
|
|
# def test_swap_special_token(self):
|
|
# tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
# for tokenizer in tokenizers:
|
|
# with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
# # Our mask token
|
|
# mask = "<mask>"
|
|
# # We take a single word in the middle of the vocabulary
|
|
# all_tokens = sorted(tokenizer.get_vocab().keys())
|
|
# word = tokenizer.decode(tokenizer.encode(all_tokens[len(all_tokens)//2], add_special_tokens=False)[:1])
|
|
|
|
# sequence_0 = "Encode " + word + " sequence"
|
|
# sequence_masked_0 = "Encode " + mask + " sequence"
|
|
|
|
# sequence_1 = word + " this sequence"
|
|
# sequence_masked_1 = mask + " this sequence"
|
|
|
|
# # Add tokens so that masked token isn't split
|
|
# # tokens = [AddedToken(t, lstrip=True, normalized=False) for t in sequence.split()]
|
|
# # tokenizer.add_tokens(tokens)
|
|
# tokenizer.add_special_tokens(
|
|
# {"mask_token": AddedToken(mask, normalized=False)}
|
|
# ) # Eat left space on Byte-level BPE tokenizers
|
|
# mask_ind = tokenizer.convert_tokens_to_ids(mask)
|
|
|
|
# # Test first masked sequence
|
|
# encoded_0 = tokenizer.encode(sequence_0, add_special_tokens=False)
|
|
# encoded_masked = tokenizer.encode(sequence_masked_0, add_special_tokens=False)
|
|
# self.assertEqual(len(encoded_masked), len(encoded_0))
|
|
# mask_loc = encoded_masked.index(mask_ind)
|
|
# encoded_masked[mask_loc] = encoded_0[mask_loc]
|
|
|
|
# self.assertEqual(encoded_masked, encoded_0)
|
|
|
|
# # Test second masked sequence
|
|
# encoded_1 = tokenizer.encode(sequence_1, add_special_tokens=False)
|
|
# encoded_masked = tokenizer.encode(sequence_masked_1, add_special_tokens=False)
|
|
# self.assertEqual(len(encoded_masked), len(encoded_1))
|
|
# mask_loc = encoded_masked.index(mask_ind)
|
|
# encoded_masked[mask_loc] = encoded_1[mask_loc]
|
|
|
|
# self.assertEqual(encoded_masked, encoded_1)
|
|
|
|
def test_special_tokens_mask(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
sequence_0 = "Encode this."
|
|
# Testing single inputs
|
|
encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
|
|
encoded_sequence_dict = tokenizer.encode_plus(
|
|
sequence_0,
|
|
add_special_tokens=True,
|
|
return_special_tokens_mask=True, # , add_prefix_space=False
|
|
)
|
|
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
|
|
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
|
|
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
|
|
|
|
filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]]
|
|
self.assertEqual(encoded_sequence, filtered_sequence)
|
|
|
|
def test_special_tokens_mask_input_pairs(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
sequence_0 = "Encode this."
|
|
sequence_1 = "This one too please."
|
|
encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
|
|
encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False)
|
|
encoded_sequence_dict = tokenizer.encode_plus(
|
|
sequence_0,
|
|
sequence_1,
|
|
add_special_tokens=True,
|
|
return_special_tokens_mask=True,
|
|
# add_prefix_space=False,
|
|
)
|
|
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
|
|
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
|
|
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
|
|
|
|
filtered_sequence = [
|
|
(x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
|
|
]
|
|
filtered_sequence = [x for x in filtered_sequence if x is not None]
|
|
self.assertEqual(encoded_sequence, filtered_sequence)
|
|
|
|
def test_padding_side_in_kwargs(self):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
if self.test_rust_tokenizer:
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, padding_side="left", **kwargs
|
|
)
|
|
self.assertEqual(tokenizer_r.padding_side, "left")
|
|
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, padding_side="right", **kwargs
|
|
)
|
|
self.assertEqual(tokenizer_r.padding_side, "right")
|
|
|
|
self.assertRaises(
|
|
ValueError,
|
|
self.rust_tokenizer_class.from_pretrained,
|
|
pretrained_name,
|
|
padding_side="unauthorized",
|
|
**kwargs,
|
|
)
|
|
|
|
if self.test_slow_tokenizer:
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, padding_side="left", **kwargs)
|
|
self.assertEqual(tokenizer_p.padding_side, "left")
|
|
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, padding_side="right", **kwargs)
|
|
self.assertEqual(tokenizer_p.padding_side, "right")
|
|
|
|
self.assertRaises(
|
|
ValueError,
|
|
self.tokenizer_class.from_pretrained,
|
|
pretrained_name,
|
|
padding_side="unauthorized",
|
|
**kwargs,
|
|
)
|
|
|
|
def test_truncation_side_in_kwargs(self):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
if self.test_rust_tokenizer:
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, truncation_side="left", **kwargs
|
|
)
|
|
self.assertEqual(tokenizer_r.truncation_side, "left")
|
|
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, truncation_side="right", **kwargs
|
|
)
|
|
self.assertEqual(tokenizer_r.truncation_side, "right")
|
|
|
|
self.assertRaises(
|
|
ValueError,
|
|
self.rust_tokenizer_class.from_pretrained,
|
|
pretrained_name,
|
|
truncation_side="unauthorized",
|
|
**kwargs,
|
|
)
|
|
|
|
if self.test_slow_tokenizer:
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(
|
|
pretrained_name, truncation_side="left", **kwargs
|
|
)
|
|
self.assertEqual(tokenizer_p.truncation_side, "left")
|
|
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(
|
|
pretrained_name, truncation_side="right", **kwargs
|
|
)
|
|
self.assertEqual(tokenizer_p.truncation_side, "right")
|
|
|
|
self.assertRaises(
|
|
ValueError,
|
|
self.tokenizer_class.from_pretrained,
|
|
pretrained_name,
|
|
truncation_side="unauthorized",
|
|
**kwargs,
|
|
)
|
|
|
|
def test_right_and_left_padding(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
sequence = "Sequence"
|
|
padding_size = 10
|
|
|
|
# check correct behaviour if no pad_token_id exists and add it eventually
|
|
self._check_no_pad_token_padding(tokenizer, sequence)
|
|
|
|
padding_idx = tokenizer.pad_token_id
|
|
|
|
# RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
|
|
tokenizer.padding_side = "right"
|
|
encoded_sequence = tokenizer.encode(sequence)
|
|
sequence_length = len(encoded_sequence)
|
|
padded_sequence = tokenizer.encode(
|
|
sequence, max_length=sequence_length + padding_size, padding="max_length"
|
|
)
|
|
padded_sequence_length = len(padded_sequence)
|
|
self.assertEqual(sequence_length + padding_size, padded_sequence_length)
|
|
self.assertEqual(encoded_sequence + [padding_idx] * padding_size, padded_sequence)
|
|
|
|
# LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
|
|
tokenizer.padding_side = "left"
|
|
encoded_sequence = tokenizer.encode(sequence)
|
|
sequence_length = len(encoded_sequence)
|
|
padded_sequence = tokenizer.encode(
|
|
sequence, max_length=sequence_length + padding_size, padding="max_length"
|
|
)
|
|
padded_sequence_length = len(padded_sequence)
|
|
self.assertEqual(sequence_length + padding_size, padded_sequence_length)
|
|
self.assertEqual([padding_idx] * padding_size + encoded_sequence, padded_sequence)
|
|
|
|
# RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding'
|
|
encoded_sequence = tokenizer.encode(sequence)
|
|
sequence_length = len(encoded_sequence)
|
|
|
|
tokenizer.padding_side = "right"
|
|
padded_sequence_right = tokenizer.encode(sequence, padding=True)
|
|
padded_sequence_right_length = len(padded_sequence_right)
|
|
self.assertEqual(sequence_length, padded_sequence_right_length)
|
|
self.assertEqual(encoded_sequence, padded_sequence_right)
|
|
|
|
tokenizer.padding_side = "left"
|
|
padded_sequence_left = tokenizer.encode(sequence, padding="longest")
|
|
padded_sequence_left_length = len(padded_sequence_left)
|
|
self.assertEqual(sequence_length, padded_sequence_left_length)
|
|
self.assertEqual(encoded_sequence, padded_sequence_left)
|
|
|
|
tokenizer.padding_side = "right"
|
|
padded_sequence_right = tokenizer.encode(sequence)
|
|
padded_sequence_right_length = len(padded_sequence_right)
|
|
self.assertEqual(sequence_length, padded_sequence_right_length)
|
|
self.assertEqual(encoded_sequence, padded_sequence_right)
|
|
|
|
tokenizer.padding_side = "left"
|
|
padded_sequence_left = tokenizer.encode(sequence, padding=False)
|
|
padded_sequence_left_length = len(padded_sequence_left)
|
|
self.assertEqual(sequence_length, padded_sequence_left_length)
|
|
self.assertEqual(encoded_sequence, padded_sequence_left)
|
|
|
|
def test_right_and_left_truncation(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
sequence = "This is a test sequence"
|
|
|
|
# RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
|
|
truncation_size = 3
|
|
tokenizer.truncation_side = "right"
|
|
encoded_sequence = tokenizer.encode(sequence, add_special_tokens=False)
|
|
sequence_length = len(encoded_sequence)
|
|
# Remove EOS/BOS tokens
|
|
truncated_sequence = tokenizer.encode(
|
|
sequence, max_length=sequence_length - truncation_size, truncation=True, add_special_tokens=False
|
|
)
|
|
truncated_sequence_length = len(truncated_sequence)
|
|
self.assertEqual(sequence_length, truncated_sequence_length + truncation_size)
|
|
self.assertEqual(encoded_sequence[:-truncation_size], truncated_sequence)
|
|
|
|
# LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the truncation flag set to True
|
|
tokenizer.truncation_side = "left"
|
|
sequence_length = len(encoded_sequence)
|
|
truncated_sequence = tokenizer.encode(
|
|
sequence, max_length=sequence_length - truncation_size, truncation=True, add_special_tokens=False
|
|
)
|
|
truncated_sequence_length = len(truncated_sequence)
|
|
self.assertEqual(sequence_length, truncated_sequence_length + truncation_size)
|
|
self.assertEqual(encoded_sequence[truncation_size:], truncated_sequence)
|
|
|
|
# RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_truncation'
|
|
sequence_length = len(encoded_sequence)
|
|
|
|
tokenizer.truncation_side = "right"
|
|
truncated_sequence_right = tokenizer.encode(sequence, truncation=True, add_special_tokens=False)
|
|
truncated_sequence_right_length = len(truncated_sequence_right)
|
|
self.assertEqual(sequence_length, truncated_sequence_right_length)
|
|
self.assertEqual(encoded_sequence, truncated_sequence_right)
|
|
|
|
tokenizer.truncation_side = "left"
|
|
truncated_sequence_left = tokenizer.encode(
|
|
sequence, truncation="longest_first", add_special_tokens=False
|
|
)
|
|
truncated_sequence_left_length = len(truncated_sequence_left)
|
|
self.assertEqual(sequence_length, truncated_sequence_left_length)
|
|
self.assertEqual(encoded_sequence, truncated_sequence_left)
|
|
|
|
tokenizer.truncation_side = "right"
|
|
truncated_sequence_right = tokenizer.encode(sequence, add_special_tokens=False)
|
|
truncated_sequence_right_length = len(truncated_sequence_right)
|
|
self.assertEqual(sequence_length, truncated_sequence_right_length)
|
|
self.assertEqual(encoded_sequence, truncated_sequence_right)
|
|
|
|
tokenizer.truncation_side = "left"
|
|
truncated_sequence_left = tokenizer.encode(sequence, truncation=False, add_special_tokens=False)
|
|
truncated_sequence_left_length = len(truncated_sequence_left)
|
|
self.assertEqual(sequence_length, truncated_sequence_left_length)
|
|
self.assertEqual(encoded_sequence, truncated_sequence_left)
|
|
|
|
def test_padding_to_max_length(self):
|
|
"""We keep this test for backward compatibility but it should be remove when `pad_to_max_length` is deprecated."""
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
sequence = "Sequence"
|
|
padding_size = 10
|
|
|
|
# check correct behaviour if no pad_token_id exists and add it eventually
|
|
self._check_no_pad_token_padding(tokenizer, sequence)
|
|
|
|
padding_idx = tokenizer.pad_token_id
|
|
|
|
# Check that it correctly pads when a maximum length is specified along with the padding flag set to True
|
|
tokenizer.padding_side = "right"
|
|
encoded_sequence = tokenizer.encode(sequence)
|
|
sequence_length = len(encoded_sequence)
|
|
# FIXME: the next line should be padding(max_length) to avoid warning
|
|
padded_sequence = tokenizer.encode(
|
|
sequence, max_length=sequence_length + padding_size, pad_to_max_length=True
|
|
)
|
|
padded_sequence_length = len(padded_sequence)
|
|
self.assertEqual(sequence_length + padding_size, padded_sequence_length)
|
|
self.assertEqual(encoded_sequence + [padding_idx] * padding_size, padded_sequence)
|
|
|
|
# Check that nothing is done when a maximum length is not specified
|
|
encoded_sequence = tokenizer.encode(sequence)
|
|
sequence_length = len(encoded_sequence)
|
|
|
|
tokenizer.padding_side = "right"
|
|
padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True)
|
|
padded_sequence_right_length = len(padded_sequence_right)
|
|
self.assertEqual(sequence_length, padded_sequence_right_length)
|
|
self.assertEqual(encoded_sequence, padded_sequence_right)
|
|
|
|
def test_padding_to_multiple_of(self):
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
if tokenizer.pad_token is None:
|
|
self.skipTest("No padding token.")
|
|
else:
|
|
empty_tokens = tokenizer("", padding=True, pad_to_multiple_of=8)
|
|
normal_tokens = tokenizer("This is a sample input", padding=True, pad_to_multiple_of=8)
|
|
for key, value in empty_tokens.items():
|
|
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
|
|
for key, value in normal_tokens.items():
|
|
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
|
|
|
|
normal_tokens = tokenizer("This", pad_to_multiple_of=8)
|
|
for key, value in normal_tokens.items():
|
|
self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
|
|
|
|
# Should also work with truncation
|
|
normal_tokens = tokenizer("This", padding=True, truncation=True, pad_to_multiple_of=8)
|
|
for key, value in normal_tokens.items():
|
|
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
|
|
|
|
# truncation to something which is not a multiple of pad_to_multiple_of raises an error
|
|
self.assertRaises(
|
|
ValueError,
|
|
tokenizer.__call__,
|
|
"This",
|
|
padding=True,
|
|
truncation=True,
|
|
max_length=12,
|
|
pad_to_multiple_of=8,
|
|
)
|
|
|
|
def test_padding_with_attention_mask(self):
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
if tokenizer.pad_token is None:
|
|
self.skipTest("No padding token.")
|
|
if "attention_mask" not in tokenizer.model_input_names:
|
|
self.skipTest("This model does not use attention mask.")
|
|
|
|
features = [
|
|
{"input_ids": [1, 2, 3, 4, 5, 6], "attention_mask": [1, 1, 1, 1, 1, 0]},
|
|
{"input_ids": [1, 2, 3], "attention_mask": [1, 1, 0]},
|
|
]
|
|
padded_features = tokenizer.pad(features)
|
|
if tokenizer.padding_side == "right":
|
|
self.assertListEqual(padded_features["attention_mask"], [[1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0]])
|
|
else:
|
|
self.assertListEqual(padded_features["attention_mask"], [[1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 0]])
|
|
|
|
def test_encode_plus_with_padding(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
sequence = "Sequence"
|
|
|
|
# check correct behaviour if no pad_token_id exists and add it eventually
|
|
self._check_no_pad_token_padding(tokenizer, sequence)
|
|
|
|
padding_size = 10
|
|
padding_idx = tokenizer.pad_token_id
|
|
token_type_padding_idx = tokenizer.pad_token_type_id
|
|
|
|
encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True)
|
|
input_ids = encoded_sequence["input_ids"]
|
|
special_tokens_mask = encoded_sequence["special_tokens_mask"]
|
|
sequence_length = len(input_ids)
|
|
|
|
# Test 'longest' and 'no_padding' don't do anything
|
|
tokenizer.padding_side = "right"
|
|
|
|
not_padded_sequence = tokenizer.encode_plus(
|
|
sequence,
|
|
padding=True,
|
|
return_special_tokens_mask=True,
|
|
)
|
|
not_padded_input_ids = not_padded_sequence["input_ids"]
|
|
|
|
not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
|
|
not_padded_sequence_length = len(not_padded_input_ids)
|
|
|
|
self.assertEqual(sequence_length, not_padded_sequence_length)
|
|
self.assertEqual(input_ids, not_padded_input_ids)
|
|
self.assertEqual(special_tokens_mask, not_padded_special_tokens_mask)
|
|
|
|
not_padded_sequence = tokenizer.encode_plus(
|
|
sequence,
|
|
padding=False,
|
|
return_special_tokens_mask=True,
|
|
)
|
|
not_padded_input_ids = not_padded_sequence["input_ids"]
|
|
|
|
not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
|
|
not_padded_sequence_length = len(not_padded_input_ids)
|
|
|
|
self.assertEqual(sequence_length, not_padded_sequence_length)
|
|
self.assertEqual(input_ids, not_padded_input_ids)
|
|
self.assertEqual(special_tokens_mask, not_padded_special_tokens_mask)
|
|
|
|
# Test right padding
|
|
tokenizer.padding_side = "right"
|
|
|
|
right_padded_sequence = tokenizer.encode_plus(
|
|
sequence,
|
|
max_length=sequence_length + padding_size,
|
|
padding="max_length",
|
|
return_special_tokens_mask=True,
|
|
)
|
|
right_padded_input_ids = right_padded_sequence["input_ids"]
|
|
|
|
right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"]
|
|
right_padded_sequence_length = len(right_padded_input_ids)
|
|
|
|
self.assertEqual(sequence_length + padding_size, right_padded_sequence_length)
|
|
self.assertEqual(input_ids + [padding_idx] * padding_size, right_padded_input_ids)
|
|
self.assertEqual(special_tokens_mask + [1] * padding_size, right_padded_special_tokens_mask)
|
|
|
|
# Test left padding
|
|
tokenizer.padding_side = "left"
|
|
left_padded_sequence = tokenizer.encode_plus(
|
|
sequence,
|
|
max_length=sequence_length + padding_size,
|
|
padding="max_length",
|
|
return_special_tokens_mask=True,
|
|
)
|
|
left_padded_input_ids = left_padded_sequence["input_ids"]
|
|
left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"]
|
|
left_padded_sequence_length = len(left_padded_input_ids)
|
|
|
|
self.assertEqual(sequence_length + padding_size, left_padded_sequence_length)
|
|
self.assertEqual([padding_idx] * padding_size + input_ids, left_padded_input_ids)
|
|
self.assertEqual([1] * padding_size + special_tokens_mask, left_padded_special_tokens_mask)
|
|
|
|
if "token_type_ids" in tokenizer.model_input_names:
|
|
token_type_ids = encoded_sequence["token_type_ids"]
|
|
left_padded_token_type_ids = left_padded_sequence["token_type_ids"]
|
|
right_padded_token_type_ids = right_padded_sequence["token_type_ids"]
|
|
|
|
self.assertEqual(
|
|
token_type_ids + [token_type_padding_idx] * padding_size, right_padded_token_type_ids
|
|
)
|
|
self.assertEqual(
|
|
[token_type_padding_idx] * padding_size + token_type_ids, left_padded_token_type_ids
|
|
)
|
|
|
|
if "attention_mask" in tokenizer.model_input_names:
|
|
attention_mask = encoded_sequence["attention_mask"]
|
|
right_padded_attention_mask = right_padded_sequence["attention_mask"]
|
|
left_padded_attention_mask = left_padded_sequence["attention_mask"]
|
|
|
|
self.assertEqual(attention_mask + [0] * padding_size, right_padded_attention_mask)
|
|
self.assertEqual([0] * padding_size + attention_mask, left_padded_attention_mask)
|
|
|
|
def test_padding_warning_message_fast_tokenizer(self):
|
|
if not self.test_rust_tokenizer:
|
|
return
|
|
|
|
sequence = "This is a text"
|
|
|
|
tokenizer_fast = self.get_rust_tokenizer()
|
|
# check correct behaviour if no pad_token_id exists and add it eventually
|
|
self._check_no_pad_token_padding(tokenizer_fast, sequence)
|
|
|
|
encoding_fast = tokenizer_fast(sequence)
|
|
|
|
with self.assertLogs("transformers", level="WARNING") as cm:
|
|
tokenizer_fast.pad(encoding_fast)
|
|
self.assertEqual(len(cm.records), 1)
|
|
self.assertIn(
|
|
"Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to"
|
|
" encode the text followed by a call to the `pad` method to get a padded encoding.",
|
|
cm.records[0].message,
|
|
)
|
|
|
|
if not self.test_slow_tokenizer:
|
|
return
|
|
|
|
tokenizer_slow = self.get_tokenizer()
|
|
# check correct behaviour if no pad_token_id exists and add it eventually
|
|
self._check_no_pad_token_padding(tokenizer_slow, sequence)
|
|
|
|
encoding_slow = tokenizer_slow(sequence)
|
|
|
|
with self.assertLogs(level="WARNING") as cm:
|
|
# We want to assert there are no warnings, but the 'assertLogs' method does not support that.
|
|
# Therefore, we are adding a dummy warning, and then we will assert it is the only warning.
|
|
logger.warning("Dummy warning")
|
|
tokenizer_slow.pad(encoding_slow)
|
|
self.assertEqual(len(cm.records), 1)
|
|
self.assertIn(
|
|
"Dummy warning",
|
|
cm.records[0].message,
|
|
)
|
|
|
|
def test_separate_tokenizers(self):
|
|
# This tests that tokenizers don't impact others. Unfortunately the case where it fails is when
|
|
# we're loading an S3 configuration from a pre-trained identifier, and we have no way of testing those today.
|
|
|
|
tokenizers = self.get_tokenizers(random_argument=True)
|
|
new_tokenizers = self.get_tokenizers(random_argument=False)
|
|
|
|
for tokenizer, new_tokenizer in zip(tokenizers, new_tokenizers):
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
self.assertTrue(tokenizer.init_kwargs["random_argument"])
|
|
self.assertTrue(tokenizer.init_kwargs["random_argument"])
|
|
self.assertFalse(new_tokenizer.init_kwargs["random_argument"])
|
|
|
|
def test_get_vocab(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
vocab_dict = tokenizer.get_vocab()
|
|
self.assertIsInstance(vocab_dict, dict)
|
|
self.assertGreaterEqual(len(tokenizer), len(vocab_dict))
|
|
|
|
vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))]
|
|
self.assertEqual(len(vocab), len(tokenizer))
|
|
|
|
tokenizer.add_tokens(["asdfasdfasdfasdf"])
|
|
vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))]
|
|
self.assertEqual(len(vocab), len(tokenizer))
|
|
|
|
def test_conversion_reversible(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
vocab = tokenizer.get_vocab()
|
|
for word, ind in vocab.items():
|
|
if word == tokenizer.unk_token:
|
|
continue
|
|
self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind)
|
|
self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word)
|
|
|
|
def test_call(self):
|
|
# Tests that all call wrap to encode_plus and batch_encode_plus
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
sequences = [
|
|
"Testing batch encode plus",
|
|
"Testing batch encode plus with different sequence lengths",
|
|
"Testing batch encode plus with different sequence lengths correctly pads",
|
|
]
|
|
|
|
# Test not batched
|
|
encoded_sequences_1 = tokenizer.encode_plus(sequences[0])
|
|
encoded_sequences_2 = tokenizer(sequences[0])
|
|
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
|
|
|
|
# Test not batched pairs
|
|
encoded_sequences_1 = tokenizer.encode_plus(sequences[0], sequences[1])
|
|
encoded_sequences_2 = tokenizer(sequences[0], sequences[1])
|
|
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
|
|
|
|
# Test batched
|
|
encoded_sequences_1 = tokenizer.batch_encode_plus(sequences)
|
|
encoded_sequences_2 = tokenizer(sequences)
|
|
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
|
|
|
|
# Test batched pairs
|
|
encoded_sequences_1 = tokenizer.batch_encode_plus(list(zip(sequences, sequences)))
|
|
encoded_sequences_2 = tokenizer(sequences, sequences)
|
|
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
|
|
|
|
def test_batch_encode_plus_batch_sequence_length(self):
|
|
# Tests that all encoded values have the correct size
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
sequences = [
|
|
"Testing batch encode plus",
|
|
"Testing batch encode plus with different sequence lengths",
|
|
"Testing batch encode plus with different sequence lengths correctly pads",
|
|
]
|
|
|
|
encoded_sequences = [tokenizer.encode_plus(sequence) for sequence in sequences]
|
|
encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, padding=False)
|
|
self.assertListEqual(
|
|
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
|
|
)
|
|
|
|
maximum_length = len(
|
|
max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len)
|
|
)
|
|
|
|
# check correct behaviour if no pad_token_id exists and add it eventually
|
|
self._check_no_pad_token_padding(tokenizer, sequences)
|
|
|
|
encoded_sequences_padded = [
|
|
tokenizer.encode_plus(sequence, max_length=maximum_length, padding="max_length")
|
|
for sequence in sequences
|
|
]
|
|
|
|
encoded_sequences_batch_padded = tokenizer.batch_encode_plus(sequences, padding=True)
|
|
self.assertListEqual(
|
|
encoded_sequences_padded,
|
|
self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded),
|
|
)
|
|
|
|
# check 'longest' is unsensitive to a max length
|
|
encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=True)
|
|
encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
|
|
sequences, max_length=maximum_length + 10, padding="longest"
|
|
)
|
|
for key in encoded_sequences_batch_padded_1.keys():
|
|
self.assertListEqual(
|
|
encoded_sequences_batch_padded_1[key],
|
|
encoded_sequences_batch_padded_2[key],
|
|
)
|
|
|
|
# check 'no_padding' is unsensitive to a max length
|
|
encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=False)
|
|
encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
|
|
sequences, max_length=maximum_length + 10, padding=False
|
|
)
|
|
for key in encoded_sequences_batch_padded_1.keys():
|
|
self.assertListEqual(
|
|
encoded_sequences_batch_padded_1[key],
|
|
encoded_sequences_batch_padded_2[key],
|
|
)
|
|
|
|
@require_tokenizers
|
|
def test_added_token_are_matched_longest_first(self):
|
|
if not self.test_slow_tokenizer:
|
|
self.skipTest("This test is only for slow tokenizers")
|
|
return
|
|
tokenizers = self.get_tokenizers(fast=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
try:
|
|
tokenizer.add_tokens([AddedToken("extra_id_1")])
|
|
tokenizer.add_tokens([AddedToken("extra_id_100")])
|
|
except Exception:
|
|
# Canine cannot add tokens which are not codepoints
|
|
self.skipTest("Cannot add those Added tokens")
|
|
|
|
# XXX: This used to split on `extra_id_1` first we're matching
|
|
# longest first now.
|
|
tokens = tokenizer.tokenize("This is some extra_id_100")
|
|
self.assertIn("extra_id_100", tokens)
|
|
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
tokenizer.add_tokens([AddedToken("extra_id_100")])
|
|
tokenizer.add_tokens([AddedToken("extra_id_1")])
|
|
|
|
tokens = tokenizer.tokenize("This is some extra_id_100")
|
|
self.assertIn("extra_id_100", tokens)
|
|
|
|
@require_tokenizers
|
|
def test_added_token_serializable(self):
|
|
# TODO this is tested 10_000 times....
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
new_token = AddedToken("new_token", lstrip=True)
|
|
tokenizer.add_tokens([new_token])
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
tokenizer.save_pretrained(tmp_dir_name)
|
|
tokenizer.from_pretrained(tmp_dir_name)
|
|
|
|
def test_batch_encode_plus_padding(self):
|
|
# Test that padded sequences are equivalent between batch_encode_plus and encode_plus
|
|
|
|
# Right padding tests
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
sequences = [
|
|
"Testing batch encode plus",
|
|
"Testing batch encode plus with different sequence lengths",
|
|
"Testing batch encode plus with different sequence lengths correctly pads",
|
|
]
|
|
|
|
max_length = 100
|
|
|
|
# check correct behaviour if no pad_token_id exists and add it eventually
|
|
self._check_no_pad_token_padding(tokenizer, sequences)
|
|
|
|
encoded_sequences = [
|
|
tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length")
|
|
for sequence in sequences
|
|
]
|
|
encoded_sequences_batch = tokenizer.batch_encode_plus(
|
|
sequences, max_length=max_length, padding="max_length"
|
|
)
|
|
self.assertListEqual(
|
|
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
|
|
)
|
|
|
|
# Left padding tests
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
tokenizer.padding_side = "left"
|
|
sequences = [
|
|
"Testing batch encode plus",
|
|
"Testing batch encode plus with different sequence lengths",
|
|
"Testing batch encode plus with different sequence lengths correctly pads",
|
|
]
|
|
|
|
max_length = 100
|
|
|
|
# check correct behaviour if no pad_token_id exists and add it eventually
|
|
self._check_no_pad_token_padding(tokenizer, sequences)
|
|
|
|
encoded_sequences = [
|
|
tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length")
|
|
for sequence in sequences
|
|
]
|
|
encoded_sequences_batch = tokenizer.batch_encode_plus(
|
|
sequences, max_length=max_length, padding="max_length"
|
|
)
|
|
self.assertListEqual(
|
|
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
|
|
)
|
|
|
|
def test_pretokenized_inputs(self):
|
|
# Test when inputs are pretokenized
|
|
|
|
tokenizers = self.get_tokenizers(do_lower_case=False) # , add_prefix_space=True)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
if hasattr(tokenizer, "add_prefix_space") and not tokenizer.add_prefix_space:
|
|
continue
|
|
|
|
# Prepare a sequence from our tokenizer vocabulary
|
|
sequence, ids = self.get_clean_sequence(tokenizer, with_prefix_space=True, max_length=20)
|
|
# sequence = " " + sequence # To be sure the byte-level tokenizers are feeling good
|
|
token_sequence = sequence.split()
|
|
# sequence_no_prefix_space = sequence.strip()
|
|
|
|
# Test encode for pretokenized inputs
|
|
output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=False)
|
|
output_sequence = tokenizer.encode(sequence, add_special_tokens=False)
|
|
self.assertEqual(output, output_sequence)
|
|
|
|
output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=True)
|
|
output_sequence = tokenizer.encode(sequence, add_special_tokens=True)
|
|
self.assertEqual(output, output_sequence)
|
|
|
|
# Test encode_plus for pretokenized inputs
|
|
output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=False)
|
|
output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=False)
|
|
for key in output.keys():
|
|
self.assertEqual(output[key], output_sequence[key])
|
|
output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=True)
|
|
output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=True)
|
|
for key in output.keys():
|
|
self.assertEqual(output[key], output_sequence[key])
|
|
|
|
# Test batch_encode_plus for pretokenized inputs
|
|
sequence_batch = [sequence.strip()] * 2 + [sequence.strip() + " " + sequence.strip()]
|
|
token_sequence_batch = [s.split() for s in sequence_batch]
|
|
sequence_batch_cleaned_up_spaces = [" " + " ".join(s) for s in token_sequence_batch]
|
|
|
|
output = tokenizer.batch_encode_plus(
|
|
token_sequence_batch, is_split_into_words=True, add_special_tokens=False
|
|
)
|
|
output_sequence = tokenizer.batch_encode_plus(
|
|
sequence_batch_cleaned_up_spaces, add_special_tokens=False
|
|
)
|
|
for key in output.keys():
|
|
self.assertEqual(output[key], output_sequence[key])
|
|
output = tokenizer.batch_encode_plus(
|
|
token_sequence_batch, is_split_into_words=True, add_special_tokens=True
|
|
)
|
|
output_sequence = tokenizer.batch_encode_plus(
|
|
sequence_batch_cleaned_up_spaces, add_special_tokens=True
|
|
)
|
|
for key in output.keys():
|
|
self.assertEqual(output[key], output_sequence[key])
|
|
|
|
# Test encode for pretokenized inputs pairs
|
|
output = tokenizer.encode(
|
|
token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False
|
|
)
|
|
output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=False)
|
|
self.assertEqual(output, output_sequence)
|
|
output = tokenizer.encode(
|
|
token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True
|
|
)
|
|
output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=True)
|
|
self.assertEqual(output, output_sequence)
|
|
|
|
# Test encode_plus for pretokenized inputs pairs
|
|
output = tokenizer.encode_plus(
|
|
token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False
|
|
)
|
|
output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=False)
|
|
for key in output.keys():
|
|
self.assertEqual(output[key], output_sequence[key])
|
|
output = tokenizer.encode_plus(
|
|
token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True
|
|
)
|
|
output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=True)
|
|
for key in output.keys():
|
|
self.assertEqual(output[key], output_sequence[key])
|
|
|
|
# Test batch_encode_plus for pretokenized inputs pairs
|
|
sequence_pair_batch = [(sequence.strip(), sequence.strip())] * 2 + [
|
|
(sequence.strip() + " " + sequence.strip(), sequence.strip())
|
|
]
|
|
token_sequence_pair_batch = [tuple(s.split() for s in pair) for pair in sequence_pair_batch]
|
|
sequence_pair_batch_cleaned_up_spaces = [
|
|
tuple(" " + " ".join(s) for s in pair) for pair in token_sequence_pair_batch
|
|
]
|
|
|
|
output = tokenizer.batch_encode_plus(
|
|
token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=False
|
|
)
|
|
output_sequence = tokenizer.batch_encode_plus(
|
|
sequence_pair_batch_cleaned_up_spaces, add_special_tokens=False
|
|
)
|
|
for key in output.keys():
|
|
self.assertEqual(output[key], output_sequence[key])
|
|
output = tokenizer.batch_encode_plus(
|
|
token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=True
|
|
)
|
|
output_sequence = tokenizer.batch_encode_plus(
|
|
sequence_pair_batch_cleaned_up_spaces, add_special_tokens=True
|
|
)
|
|
for key in output.keys():
|
|
self.assertEqual(output[key], output_sequence[key])
|
|
|
|
def test_prepare_for_model(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
string_sequence = "Testing the prepare_for_model method."
|
|
ids = tokenizer.encode(string_sequence, add_special_tokens=False)
|
|
prepared_input_dict = tokenizer.prepare_for_model(ids, add_special_tokens=True)
|
|
|
|
input_dict = tokenizer.encode_plus(string_sequence, add_special_tokens=True)
|
|
|
|
self.assertEqual(input_dict, prepared_input_dict)
|
|
|
|
def test_batch_encode_plus_overflowing_tokens(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
string_sequences = ["Testing the prepare_for_model method.", "Test"]
|
|
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
|
|
|
tokenizer.batch_encode_plus(
|
|
string_sequences, return_overflowing_tokens=True, truncation=True, padding=True, max_length=3
|
|
)
|
|
|
|
@is_pt_tf_cross_test
|
|
def test_batch_encode_plus_tensors(self):
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
sequences = [
|
|
"Testing batch encode plus",
|
|
"Testing batch encode plus with different sequence lengths",
|
|
"Testing batch encode plus with different sequence lengths correctly pads",
|
|
]
|
|
|
|
# A Tensor cannot be build by sequences which are not the same size
|
|
self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="pt")
|
|
self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="tf")
|
|
|
|
if tokenizer.pad_token_id is None:
|
|
self.assertRaises(
|
|
ValueError,
|
|
tokenizer.batch_encode_plus,
|
|
sequences,
|
|
padding=True,
|
|
return_tensors="pt",
|
|
)
|
|
self.assertRaises(
|
|
ValueError,
|
|
tokenizer.batch_encode_plus,
|
|
sequences,
|
|
padding="longest",
|
|
return_tensors="tf",
|
|
)
|
|
else:
|
|
pytorch_tensor = tokenizer.batch_encode_plus(sequences, padding=True, return_tensors="pt")
|
|
tensorflow_tensor = tokenizer.batch_encode_plus(sequences, padding="longest", return_tensors="tf")
|
|
encoded_sequences = tokenizer.batch_encode_plus(sequences, padding=True)
|
|
|
|
for key in encoded_sequences.keys():
|
|
pytorch_value = pytorch_tensor[key].tolist()
|
|
tensorflow_value = tensorflow_tensor[key].numpy().tolist()
|
|
encoded_value = encoded_sequences[key]
|
|
|
|
self.assertEqual(pytorch_value, tensorflow_value, encoded_value)
|
|
|
|
def _check_no_pad_token_padding(self, tokenizer, sequences):
|
|
# if tokenizer does not have pad_token_id, an error should be thrown
|
|
if tokenizer.pad_token_id is None:
|
|
with self.assertRaises(ValueError):
|
|
if isinstance(sequences, list):
|
|
tokenizer.batch_encode_plus(sequences, padding="longest")
|
|
else:
|
|
tokenizer.encode_plus(sequences, padding=True)
|
|
|
|
# add pad_token_id to pass subsequent tests
|
|
tokenizer.add_special_tokens({"pad_token": "<PAD>"})
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_torch_encode_plus_sent_to_model(self):
|
|
import torch
|
|
|
|
from transformers import MODEL_MAPPING, TOKENIZER_MAPPING
|
|
|
|
MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)
|
|
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
|
|
return
|
|
|
|
config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
|
|
config = config_class()
|
|
|
|
if config.is_encoder_decoder or config.pad_token_id is None:
|
|
return
|
|
|
|
model = model_class(config)
|
|
|
|
# Make sure the model contains at least the full vocabulary size in its embedding matrix
|
|
is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight")
|
|
if is_using_common_embeddings:
|
|
self.assertGreaterEqual(model.get_input_embeddings().weight.shape[0], len(tokenizer))
|
|
|
|
# Build sequence
|
|
first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
|
|
sequence = " ".join(first_ten_tokens)
|
|
encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="pt")
|
|
|
|
# Ensure that the BatchEncoding.to() method works.
|
|
encoded_sequence.to(model.device)
|
|
|
|
batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
|
|
# This should not fail
|
|
|
|
with torch.no_grad(): # saves some time
|
|
model(**encoded_sequence)
|
|
model(**batch_encoded_sequence)
|
|
|
|
# if self.test_rust_tokenizer:
|
|
# fast_tokenizer = self.get_rust_tokenizer()
|
|
# encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="pt")
|
|
# batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
|
|
# # This should not fail
|
|
# model(**encoded_sequence_fast)
|
|
# model(**batch_encoded_sequence_fast)
|
|
|
|
@require_tf
|
|
@slow
|
|
def test_tf_encode_plus_sent_to_model(self):
|
|
from transformers import TF_MODEL_MAPPING, TOKENIZER_MAPPING
|
|
|
|
MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(TF_MODEL_MAPPING, TOKENIZER_MAPPING)
|
|
|
|
tokenizers = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
|
|
return
|
|
|
|
config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
|
|
config = config_class()
|
|
|
|
if config.is_encoder_decoder or config.pad_token_id is None:
|
|
return
|
|
|
|
model = model_class(config)
|
|
|
|
# Make sure the model contains at least the full vocabulary size in its embedding matrix
|
|
self.assertGreaterEqual(model.config.vocab_size, len(tokenizer))
|
|
|
|
# Build sequence
|
|
first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
|
|
sequence = " ".join(first_ten_tokens)
|
|
encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="tf")
|
|
batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="tf")
|
|
|
|
# This should not fail
|
|
model(encoded_sequence)
|
|
model(batch_encoded_sequence)
|
|
|
|
# TODO: Check if require_torch is the best to test for numpy here ... Maybe move to require_flax when available
|
|
@require_torch
|
|
@slow
|
|
def test_np_encode_plus_sent_to_model(self):
|
|
from transformers import MODEL_MAPPING, TOKENIZER_MAPPING
|
|
|
|
MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)
|
|
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
|
|
return
|
|
|
|
config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
|
|
config = config_class()
|
|
|
|
if config.is_encoder_decoder or config.pad_token_id is None:
|
|
return
|
|
|
|
# Build sequence
|
|
first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
|
|
sequence = " ".join(first_ten_tokens)
|
|
encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="np")
|
|
batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="np")
|
|
|
|
# TODO: add forward through JAX/Flax when PR is merged
|
|
# This is currently here to make ruff happy !
|
|
if encoded_sequence is None:
|
|
raise ValueError("Cannot convert list to numpy tensor on encode_plus()")
|
|
|
|
if batch_encoded_sequence is None:
|
|
raise ValueError("Cannot convert list to numpy tensor on batch_encode_plus()")
|
|
|
|
if self.test_rust_tokenizer:
|
|
fast_tokenizer = self.get_rust_tokenizer()
|
|
encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="np")
|
|
batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus(
|
|
[sequence, sequence], return_tensors="np"
|
|
)
|
|
|
|
# TODO: add forward through JAX/Flax when PR is merged
|
|
# This is currently here to make ruff happy !
|
|
if encoded_sequence_fast is None:
|
|
raise ValueError("Cannot convert list to numpy tensor on encode_plus() (fast)")
|
|
|
|
if batch_encoded_sequence_fast is None:
|
|
raise ValueError("Cannot convert list to numpy tensor on batch_encode_plus() (fast)")
|
|
|
|
@require_torch
|
|
def test_prepare_seq2seq_batch(self):
|
|
if not self.test_seq2seq:
|
|
return
|
|
|
|
tokenizers = self.get_tokenizers()
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
# Longer text that will definitely require truncation.
|
|
src_text = [
|
|
" UN Chief Says There Is No Military Solution in Syria",
|
|
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for"
|
|
" Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons"
|
|
" will only worsen the violence and misery for millions of people.",
|
|
]
|
|
tgt_text = [
|
|
"Şeful ONU declară că nu există o soluţie militară în Siria",
|
|
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al"
|
|
' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi'
|
|
" că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
|
|
]
|
|
try:
|
|
batch = tokenizer.prepare_seq2seq_batch(
|
|
src_texts=src_text,
|
|
tgt_texts=tgt_text,
|
|
max_length=3,
|
|
max_target_length=10,
|
|
return_tensors="pt",
|
|
src_lang="en_XX", # this should be ignored (for all but mbart) but not cause an error
|
|
)
|
|
except NotImplementedError:
|
|
return
|
|
self.assertEqual(batch.input_ids.shape[1], 3)
|
|
self.assertEqual(batch.labels.shape[1], 10)
|
|
# max_target_length will default to max_length if not specified
|
|
batch = tokenizer.prepare_seq2seq_batch(
|
|
src_text, tgt_texts=tgt_text, max_length=3, return_tensors="pt"
|
|
)
|
|
self.assertEqual(batch.input_ids.shape[1], 3)
|
|
self.assertEqual(batch.labels.shape[1], 3)
|
|
|
|
batch_encoder_only = tokenizer.prepare_seq2seq_batch(
|
|
src_texts=src_text, max_length=3, max_target_length=10, return_tensors="pt"
|
|
)
|
|
self.assertEqual(batch_encoder_only.input_ids.shape[1], 3)
|
|
self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3)
|
|
self.assertNotIn("decoder_input_ids", batch_encoder_only)
|
|
|
|
def test_is_fast(self):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
# Check is_fast is set correctly
|
|
self.assertTrue(tokenizer_r.is_fast)
|
|
|
|
if self.test_slow_tokenizer:
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
self.assertFalse(tokenizer_p.is_fast)
|
|
|
|
def test_fast_only_inputs(self):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
# Ensure None raise an error
|
|
self.assertRaises(TypeError, tokenizer_r.tokenize, None)
|
|
self.assertRaises(TypeError, tokenizer_r.encode, None)
|
|
self.assertRaises(TypeError, tokenizer_r.encode_plus, None)
|
|
self.assertRaises(TypeError, tokenizer_r.batch_encode_plus, None)
|
|
|
|
def test_alignement_methods(self):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"]
|
|
text = " ".join(words)
|
|
batch_size = 3
|
|
|
|
encoding = tokenizer_r.encode_plus(text, add_special_tokens=False)
|
|
|
|
batch_encoding = tokenizer_r.batch_encode_plus([text] * batch_size, add_special_tokens=False)
|
|
num_tokens = len(encoding["input_ids"])
|
|
|
|
last_word_index = len(words) - 1
|
|
last_token_index = num_tokens - 1
|
|
last_batch_index = batch_size - 1
|
|
last_char_index = len(text) - 1
|
|
|
|
# words, tokens
|
|
self.assertEqual(len(encoding.words(0)), num_tokens)
|
|
self.assertEqual(max(encoding.words(0)), last_word_index)
|
|
self.assertEqual(min(encoding.words(0)), 0)
|
|
self.assertEqual(len(batch_encoding.words(last_batch_index)), num_tokens)
|
|
self.assertEqual(max(batch_encoding.words(last_batch_index)), last_word_index)
|
|
self.assertEqual(min(batch_encoding.words(last_batch_index)), 0)
|
|
self.assertEqual(len(encoding.tokens(0)), num_tokens)
|
|
|
|
# Assert token_to_word
|
|
self.assertEqual(encoding.token_to_word(0), 0)
|
|
self.assertEqual(encoding.token_to_word(0, 0), 0)
|
|
self.assertEqual(encoding.token_to_word(last_token_index), last_word_index)
|
|
self.assertEqual(encoding.token_to_word(0, last_token_index), last_word_index)
|
|
self.assertEqual(batch_encoding.token_to_word(1, 0), 0)
|
|
self.assertEqual(batch_encoding.token_to_word(0, last_token_index), last_word_index)
|
|
self.assertEqual(batch_encoding.token_to_word(last_batch_index, last_token_index), last_word_index)
|
|
|
|
# Assert word_to_tokens
|
|
self.assertEqual(encoding.word_to_tokens(0).start, 0)
|
|
self.assertEqual(encoding.word_to_tokens(0, 0).start, 0)
|
|
self.assertEqual(encoding.word_to_tokens(last_word_index).end, last_token_index + 1)
|
|
self.assertEqual(encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
|
|
self.assertEqual(batch_encoding.word_to_tokens(1, 0).start, 0)
|
|
self.assertEqual(batch_encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
|
|
self.assertEqual(
|
|
batch_encoding.word_to_tokens(last_batch_index, last_word_index).end, last_token_index + 1
|
|
)
|
|
|
|
# Assert token_to_chars
|
|
self.assertEqual(encoding.token_to_chars(0).start, 0)
|
|
self.assertEqual(encoding.token_to_chars(0, 0).start, 0)
|
|
self.assertEqual(encoding.token_to_chars(last_token_index).end, last_char_index + 1)
|
|
self.assertEqual(encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
|
|
self.assertEqual(batch_encoding.token_to_chars(1, 0).start, 0)
|
|
self.assertEqual(batch_encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
|
|
self.assertEqual(
|
|
batch_encoding.token_to_chars(last_batch_index, last_token_index).end, last_char_index + 1
|
|
)
|
|
|
|
# Assert char_to_token
|
|
self.assertEqual(encoding.char_to_token(0), 0)
|
|
self.assertEqual(encoding.char_to_token(0, 0), 0)
|
|
self.assertEqual(encoding.char_to_token(last_char_index), last_token_index)
|
|
self.assertEqual(encoding.char_to_token(0, last_char_index), last_token_index)
|
|
self.assertEqual(batch_encoding.char_to_token(1, 0), 0)
|
|
self.assertEqual(batch_encoding.char_to_token(0, last_char_index), last_token_index)
|
|
self.assertEqual(batch_encoding.char_to_token(last_batch_index, last_char_index), last_token_index)
|
|
|
|
# Assert char_to_word
|
|
self.assertEqual(encoding.char_to_word(0), 0)
|
|
self.assertEqual(encoding.char_to_word(0, 0), 0)
|
|
self.assertEqual(encoding.char_to_word(last_char_index), last_word_index)
|
|
self.assertEqual(encoding.char_to_word(0, last_char_index), last_word_index)
|
|
self.assertEqual(batch_encoding.char_to_word(1, 0), 0)
|
|
self.assertEqual(batch_encoding.char_to_word(0, last_char_index), last_word_index)
|
|
self.assertEqual(batch_encoding.char_to_word(last_batch_index, last_char_index), last_word_index)
|
|
|
|
# Assert word_to_chars
|
|
self.assertEqual(encoding.word_to_chars(0).start, 0)
|
|
self.assertEqual(encoding.word_to_chars(0, 0).start, 0)
|
|
self.assertEqual(encoding.word_to_chars(last_word_index).end, last_char_index + 1)
|
|
self.assertEqual(encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
|
|
self.assertEqual(batch_encoding.word_to_chars(1, 0).start, 0)
|
|
self.assertEqual(batch_encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
|
|
self.assertEqual(
|
|
batch_encoding.word_to_chars(last_batch_index, last_word_index).end, last_char_index + 1
|
|
)
|
|
|
|
# Assert token_to_sequence
|
|
self.assertEqual(encoding.token_to_sequence(num_tokens // 2), 0)
|
|
self.assertEqual(encoding.token_to_sequence(0, num_tokens // 2), 0)
|
|
self.assertEqual(batch_encoding.token_to_sequence(1, num_tokens // 2), 0)
|
|
self.assertEqual(batch_encoding.token_to_sequence(0, num_tokens // 2), 0)
|
|
self.assertEqual(batch_encoding.token_to_sequence(last_batch_index, num_tokens // 2), 0)
|
|
|
|
# Pair of input sequences
|
|
|
|
words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"]
|
|
text = " ".join(words)
|
|
pair_words = ["Amazing", "example", "full", "of", "inspiration"]
|
|
pair_text = " ".join(pair_words)
|
|
batch_size = 3
|
|
index_word_in_first_seq = words.index("inspiration")
|
|
index_word_in_pair_seq = pair_words.index("inspiration")
|
|
index_char_in_first_seq = text.find("inspiration")
|
|
index_char_in_pair_seq = pair_text.find("inspiration")
|
|
|
|
pair_encoding = tokenizer_r.encode_plus(text, pair_text, add_special_tokens=False)
|
|
|
|
pair_batch_encoding = tokenizer_r.batch_encode_plus(
|
|
[(text, pair_text)] * batch_size, add_special_tokens=False
|
|
)
|
|
num_tokens = len(encoding["input_ids"])
|
|
|
|
last_word_index = len(words) - 1
|
|
last_token_index = num_tokens - 1
|
|
last_batch_index = batch_size - 1
|
|
last_char_index = len(text) - 1
|
|
|
|
# Assert word_to_tokens
|
|
self.assertNotEqual(
|
|
pair_encoding.word_to_tokens(index_word_in_first_seq, sequence_index=0).start,
|
|
pair_encoding.word_to_tokens(index_word_in_pair_seq, sequence_index=1).start,
|
|
)
|
|
self.assertEqual(
|
|
pair_encoding["input_ids"][
|
|
pair_encoding.word_to_tokens(index_word_in_first_seq, sequence_index=0).start
|
|
],
|
|
pair_encoding["input_ids"][
|
|
pair_encoding.word_to_tokens(index_word_in_pair_seq, sequence_index=1).start
|
|
],
|
|
)
|
|
self.assertNotEqual(
|
|
pair_batch_encoding.word_to_tokens(1, index_word_in_first_seq, sequence_index=0).start,
|
|
pair_batch_encoding.word_to_tokens(1, index_word_in_pair_seq, sequence_index=1).start,
|
|
)
|
|
self.assertEqual(
|
|
pair_batch_encoding["input_ids"][1][
|
|
pair_batch_encoding.word_to_tokens(1, index_word_in_first_seq, sequence_index=0).start
|
|
],
|
|
pair_batch_encoding["input_ids"][1][
|
|
pair_batch_encoding.word_to_tokens(1, index_word_in_pair_seq, sequence_index=1).start
|
|
],
|
|
)
|
|
|
|
# Assert char_to_token
|
|
self.assertNotEqual(
|
|
pair_encoding.char_to_token(index_char_in_first_seq, sequence_index=0),
|
|
pair_encoding.char_to_token(index_char_in_pair_seq, sequence_index=1),
|
|
)
|
|
self.assertEqual(
|
|
pair_encoding["input_ids"][pair_encoding.char_to_token(index_char_in_first_seq, sequence_index=0)],
|
|
pair_encoding["input_ids"][pair_encoding.char_to_token(index_char_in_pair_seq, sequence_index=1)],
|
|
)
|
|
self.assertNotEqual(
|
|
pair_batch_encoding.char_to_token(1, index_char_in_first_seq, sequence_index=0),
|
|
pair_batch_encoding.char_to_token(1, index_char_in_pair_seq, sequence_index=1),
|
|
)
|
|
self.assertEqual(
|
|
pair_batch_encoding["input_ids"][1][
|
|
pair_batch_encoding.char_to_token(1, index_char_in_first_seq, sequence_index=0)
|
|
],
|
|
pair_batch_encoding["input_ids"][1][
|
|
pair_batch_encoding.char_to_token(1, index_char_in_pair_seq, sequence_index=1)
|
|
],
|
|
)
|
|
|
|
# Assert char_to_word
|
|
self.assertNotEqual(
|
|
pair_encoding.char_to_word(index_char_in_first_seq, sequence_index=0),
|
|
pair_encoding.char_to_word(index_char_in_pair_seq, sequence_index=1),
|
|
)
|
|
self.assertEqual(
|
|
words[pair_encoding.char_to_word(index_char_in_first_seq, sequence_index=0)],
|
|
pair_words[pair_encoding.char_to_word(index_char_in_pair_seq, sequence_index=1)],
|
|
)
|
|
self.assertNotEqual(
|
|
pair_batch_encoding.char_to_word(1, index_char_in_first_seq, sequence_index=0),
|
|
pair_batch_encoding.char_to_word(1, index_char_in_pair_seq, sequence_index=1),
|
|
)
|
|
self.assertEqual(
|
|
words[pair_batch_encoding.char_to_word(1, index_char_in_first_seq, sequence_index=0)],
|
|
pair_words[pair_batch_encoding.char_to_word(1, index_char_in_pair_seq, sequence_index=1)],
|
|
)
|
|
|
|
# Assert word_to_chars
|
|
self.assertNotEqual(
|
|
pair_encoding.word_to_chars(index_word_in_first_seq, sequence_index=0).start,
|
|
pair_encoding.word_to_chars(index_word_in_pair_seq, sequence_index=1).start,
|
|
)
|
|
self.assertEqual(
|
|
text[pair_encoding.word_to_chars(index_word_in_first_seq, sequence_index=0).start],
|
|
pair_text[pair_encoding.word_to_chars(index_word_in_pair_seq, sequence_index=1).start],
|
|
)
|
|
self.assertNotEqual(
|
|
pair_batch_encoding.word_to_chars(1, index_word_in_first_seq, sequence_index=0).start,
|
|
pair_batch_encoding.word_to_chars(1, index_word_in_pair_seq, sequence_index=1).start,
|
|
)
|
|
self.assertEqual(
|
|
text[pair_batch_encoding.word_to_chars(1, index_word_in_first_seq, sequence_index=0).start],
|
|
pair_text[pair_batch_encoding.word_to_chars(1, index_word_in_pair_seq, sequence_index=1).start],
|
|
)
|
|
|
|
# Assert token_to_sequence
|
|
pair_encoding = tokenizer_r.encode_plus(text, pair_text, add_special_tokens=True)
|
|
|
|
pair_sequence_ids = [
|
|
pair_encoding.token_to_sequence(i) for i in range(len(pair_encoding["input_ids"]))
|
|
]
|
|
self.assertIn(0, pair_sequence_ids)
|
|
self.assertIn(1, pair_sequence_ids)
|
|
if tokenizer_r.num_special_tokens_to_add(pair=True):
|
|
self.assertIn(None, pair_sequence_ids)
|
|
|
|
pair_batch_encoding = tokenizer_r.batch_encode_plus(
|
|
[(text, pair_text)] * batch_size, add_special_tokens=True
|
|
)
|
|
pair_batch_sequence_ids = [
|
|
pair_batch_encoding.token_to_sequence(1, i)
|
|
for i in range(len(pair_batch_encoding["input_ids"][0]))
|
|
]
|
|
self.assertIn(0, pair_batch_sequence_ids)
|
|
self.assertIn(1, pair_batch_sequence_ids)
|
|
if tokenizer_r.num_special_tokens_to_add(pair=True):
|
|
self.assertIn(None, pair_batch_sequence_ids)
|
|
|
|
def test_tokenization_python_rust_equals(self):
|
|
if not self.test_slow_tokenizer:
|
|
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
|
|
return
|
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
# Ensure basic input match
|
|
input_p = tokenizer_p.encode_plus(self._data)
|
|
input_r = tokenizer_r.encode_plus(self._data)
|
|
|
|
for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
|
|
self.assertSequenceEqual(input_p[key], input_r[key])
|
|
|
|
input_pairs_p = tokenizer_p.encode_plus(self._data, self._data)
|
|
input_pairs_r = tokenizer_r.encode_plus(self._data, self._data)
|
|
|
|
for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
|
|
self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key])
|
|
|
|
# Ensure truncation match
|
|
input_p = tokenizer_p.encode_plus(self._data, max_length=512, truncation=True)
|
|
input_r = tokenizer_r.encode_plus(self._data, max_length=512, truncation=True)
|
|
|
|
for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
|
|
self.assertSequenceEqual(input_p[key], input_r[key])
|
|
|
|
# Ensure truncation with stride match
|
|
input_p = tokenizer_p.encode_plus(
|
|
self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
|
|
)
|
|
input_r = tokenizer_r.encode_plus(
|
|
self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
|
|
)
|
|
|
|
for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
|
|
self.assertSequenceEqual(input_p[key], input_r[key][0])
|
|
|
|
def test_num_special_tokens_to_add_equal(self):
|
|
if not self.test_slow_tokenizer:
|
|
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
|
|
return
|
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
# Check we have the same number of added_tokens for both pair and non-pair inputs.
|
|
self.assertEqual(
|
|
tokenizer_r.num_special_tokens_to_add(False), tokenizer_p.num_special_tokens_to_add(False)
|
|
)
|
|
self.assertEqual(
|
|
tokenizer_r.num_special_tokens_to_add(True), tokenizer_p.num_special_tokens_to_add(True)
|
|
)
|
|
|
|
def test_max_length_equal(self):
|
|
if not self.test_slow_tokenizer:
|
|
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
|
|
return
|
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
# Check we have the correct max_length for both pair and non-pair inputs.
|
|
self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
|
|
self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)
|
|
|
|
def test_special_tokens_map_equal(self):
|
|
if not self.test_slow_tokenizer:
|
|
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
|
|
return
|
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
# sometimes the tokenizer saved online is not the same
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
# Assert the set of special tokens match.
|
|
self.assertSequenceEqual(
|
|
tokenizer_p.special_tokens_map.items(),
|
|
tokenizer_r.special_tokens_map.items(),
|
|
)
|
|
|
|
def test_add_tokens(self):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
vocab_size = len(tokenizer_r)
|
|
self.assertEqual(tokenizer_r.add_tokens(""), 0)
|
|
self.assertEqual(tokenizer_r.add_tokens("testoken"), 1)
|
|
self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2)
|
|
self.assertEqual(len(tokenizer_r), vocab_size + 3)
|
|
|
|
self.assertEqual(tokenizer_r.add_special_tokens({}), 0)
|
|
self.assertEqual(tokenizer_r.add_special_tokens({"bos_token": "[BOS]", "eos_token": "[EOS]"}), 2)
|
|
self.assertRaises(
|
|
AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"}
|
|
)
|
|
self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1)
|
|
self.assertEqual(
|
|
tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2
|
|
)
|
|
self.assertIn("<testtoken3>", tokenizer_r.special_tokens_map["additional_special_tokens"])
|
|
self.assertIsInstance(tokenizer_r.special_tokens_map["additional_special_tokens"], list)
|
|
self.assertGreaterEqual(len(tokenizer_r.special_tokens_map["additional_special_tokens"]), 2)
|
|
|
|
self.assertEqual(len(tokenizer_r), vocab_size + 8)
|
|
|
|
def test_offsets_mapping(self):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
text = "Wonderful no inspiration example with subtoken"
|
|
pair = "Along with an awesome pair"
|
|
|
|
# No pair
|
|
tokens_with_offsets = tokenizer_r.encode_plus(
|
|
text, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
|
|
)
|
|
added_tokens = tokenizer_r.num_special_tokens_to_add(False)
|
|
offsets = tokens_with_offsets["offset_mapping"]
|
|
|
|
# Assert there is the same number of tokens and offsets
|
|
self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))
|
|
|
|
# Assert there is online added_tokens special_tokens
|
|
self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)
|
|
|
|
# Pairs
|
|
tokens_with_offsets = tokenizer_r.encode_plus(
|
|
text, pair, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
|
|
)
|
|
added_tokens = tokenizer_r.num_special_tokens_to_add(True)
|
|
offsets = tokens_with_offsets["offset_mapping"]
|
|
|
|
# Assert there is the same number of tokens and offsets
|
|
self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))
|
|
|
|
# Assert there is online added_tokens special_tokens
|
|
self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)
|
|
|
|
def test_batch_encode_dynamic_overflowing(self):
|
|
"""
|
|
When calling batch_encode with multiple sequence it can returns different number of
|
|
overflowing encoding for each sequence:
|
|
[
|
|
Sequence 1: [Encoding 1, Encoding 2],
|
|
Sequence 2: [Encoding 1],
|
|
Sequence 3: [Encoding 1, Encoding 2, ... Encoding N]
|
|
]
|
|
This needs to be padded so that it can represented as a tensor
|
|
"""
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name}, {tokenizer.__class__.__name__})"):
|
|
if is_torch_available():
|
|
returned_tensor = "pt"
|
|
elif is_tf_available():
|
|
returned_tensor = "tf"
|
|
elif is_flax_available():
|
|
returned_tensor = "jax"
|
|
else:
|
|
return
|
|
|
|
if not tokenizer.pad_token or tokenizer.pad_token_id < 0:
|
|
return
|
|
|
|
tokens = tokenizer.encode_plus(
|
|
"HuggingFace is solving NLP one commit at a time",
|
|
max_length=6,
|
|
padding=True,
|
|
truncation=True,
|
|
return_tensors=returned_tensor,
|
|
return_overflowing_tokens=True,
|
|
)
|
|
|
|
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
|
|
self.assertEqual(len(tokens[key].shape), 2)
|
|
|
|
# Mono sample
|
|
tokens = tokenizer.batch_encode_plus(
|
|
["HuggingFace is solving NLP one commit at a time"],
|
|
max_length=6,
|
|
padding=True,
|
|
truncation="only_first",
|
|
return_tensors=returned_tensor,
|
|
return_overflowing_tokens=True,
|
|
)
|
|
|
|
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
|
|
self.assertEqual(len(tokens[key].shape), 2)
|
|
self.assertEqual(tokens[key].shape[-1], 6)
|
|
|
|
# Multi sample
|
|
tokens = tokenizer.batch_encode_plus(
|
|
["HuggingFace is solving NLP one commit at a time", "Very tiny input"],
|
|
max_length=6,
|
|
padding=True,
|
|
truncation="only_first",
|
|
return_tensors=returned_tensor,
|
|
return_overflowing_tokens=True,
|
|
)
|
|
|
|
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
|
|
self.assertEqual(len(tokens[key].shape), 2)
|
|
self.assertEqual(tokens[key].shape[-1], 6)
|
|
|
|
def test_compare_pretokenized_inputs(self):
|
|
if not self.test_slow_tokenizer:
|
|
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
|
|
return
|
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
if hasattr(tokenizer_p, "add_prefix_space") and not tokenizer_p.add_prefix_space:
|
|
continue # Too hard to test for now
|
|
|
|
# Input string
|
|
pretokenized_input_simple = "This is a sample input".split()
|
|
pretokenized_input_pair = "This is a sample pair".split()
|
|
|
|
# Test encode for pretokenized inputs
|
|
output_r = tokenizer_r.encode(
|
|
pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False
|
|
)
|
|
output_p = tokenizer_p.encode(
|
|
pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False
|
|
)
|
|
self.assertEqual(output_p, output_r)
|
|
|
|
kwargs = {
|
|
"is_split_into_words": True,
|
|
# "return_token_type_ids": True, # Use the defaults for each tokenizers
|
|
# "return_attention_mask": True, # Use the defaults for each tokenizers
|
|
"return_overflowing_tokens": False,
|
|
"return_special_tokens_mask": True,
|
|
"return_offsets_mapping": False, # Not implemented in python tokenizers
|
|
# "add_special_tokens": False,
|
|
}
|
|
batch_kwargs = {
|
|
"is_split_into_words": True,
|
|
# "return_token_type_ids": True, # Use the defaults for each tokenizers
|
|
# "return_attention_mask": True, # Use the defaults for each tokenizers
|
|
"return_overflowing_tokens": False,
|
|
"return_special_tokens_mask": True,
|
|
"return_offsets_mapping": False, # Not implemented in python tokenizers
|
|
# "add_special_tokens": False,
|
|
}
|
|
# Test encode_plus for pretokenized inputs
|
|
output_r = tokenizer_r.encode_plus(pretokenized_input_simple, **kwargs)
|
|
output_p = tokenizer_p.encode_plus(pretokenized_input_simple, **kwargs)
|
|
for key in output_p.keys():
|
|
self.assertEqual(output_p[key], output_r[key])
|
|
|
|
# Test batch_encode_plus for pretokenized inputs
|
|
input_batch = ([pretokenized_input_simple] * 2) + [pretokenized_input_simple + pretokenized_input_pair]
|
|
output_r = tokenizer_r.batch_encode_plus(input_batch, **batch_kwargs)
|
|
output_p = tokenizer_p.batch_encode_plus(input_batch, **batch_kwargs)
|
|
for key in output_p.keys():
|
|
self.assertEqual(output_p[key], output_r[key])
|
|
|
|
# Test encode for pretokenized inputs pairs
|
|
output_r = tokenizer_r.encode(
|
|
pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True
|
|
)
|
|
output_p = tokenizer_p.encode(
|
|
pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True
|
|
)
|
|
self.assertEqual(output_p, output_r)
|
|
|
|
# Test encode_plus for pretokenized inputs
|
|
output_r = tokenizer_r.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs)
|
|
output_p = tokenizer_p.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs)
|
|
for key in output_p.keys():
|
|
self.assertEqual(output_p[key], output_r[key])
|
|
|
|
# Test batch_encode_plus for pretokenized inputs
|
|
input_batch_pair = ([pretokenized_input_simple, pretokenized_input_pair] * 2) + [
|
|
pretokenized_input_simple + pretokenized_input_pair,
|
|
pretokenized_input_pair,
|
|
]
|
|
output_r = tokenizer_r.batch_encode_plus(input_batch_pair, **batch_kwargs)
|
|
output_p = tokenizer_p.batch_encode_plus(input_batch_pair, **batch_kwargs)
|
|
for key in output_p.keys():
|
|
self.assertEqual(output_p[key], output_r[key])
|
|
|
|
def test_create_token_type_ids(self):
|
|
if not self.test_slow_tokenizer:
|
|
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
|
|
return
|
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
input_simple = [1, 2, 3]
|
|
input_pair = [1, 2, 3]
|
|
|
|
# Generate output
|
|
output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple)
|
|
output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple)
|
|
self.assertEqual(output_p, output_r)
|
|
|
|
# Generate pair output
|
|
output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple, input_pair)
|
|
output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple, input_pair)
|
|
self.assertEqual(output_p, output_r)
|
|
|
|
def test_build_inputs_with_special_tokens(self):
|
|
if not self.test_slow_tokenizer:
|
|
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
|
|
return
|
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
# # Input string
|
|
# input_simple = tokenizer_p.tokenize("This is a sample input", add_special_tokens=False)
|
|
# input_pair = tokenizer_p.tokenize("This is a sample pair", add_special_tokens=False)
|
|
|
|
# # Generate output
|
|
# output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
|
|
# output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
|
|
# self.assertEqual(output_p, output_r)
|
|
|
|
# # Generate pair output
|
|
# output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
|
|
# output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
|
|
# self.assertEqual(output_p, output_r)
|
|
|
|
input_pairs = [
|
|
("", ""),
|
|
("", "This is a sample pair"),
|
|
("This is a sample input", ""),
|
|
("This is a sample input", "This is a sample pair"),
|
|
]
|
|
|
|
for sample_input, sample_pair in input_pairs:
|
|
# Input tokens id
|
|
input_simple = tokenizer_p.encode(sample_input, add_special_tokens=False)
|
|
input_pair = tokenizer_p.encode(sample_pair, add_special_tokens=False)
|
|
|
|
# Generate output
|
|
output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
|
|
output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
|
|
self.assertEqual(output_p, output_r)
|
|
|
|
# Generate pair output
|
|
output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
|
|
output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
|
|
self.assertEqual(output_p, output_r)
|
|
|
|
def test_padding(self, max_length=50):
|
|
if not self.test_slow_tokenizer:
|
|
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
|
|
return
|
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id)
|
|
pad_token_id = tokenizer_p.pad_token_id
|
|
|
|
# Encode - Simple input
|
|
input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
|
|
input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
|
|
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
|
|
input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, padding="max_length")
|
|
input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, padding="max_length")
|
|
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
|
|
|
|
input_r = tokenizer_r.encode("This is a simple input", padding="longest")
|
|
input_p = tokenizer_p.encode("This is a simple input", padding=True)
|
|
self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
|
|
|
|
# Encode - Pair input
|
|
input_r = tokenizer_r.encode(
|
|
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
|
|
)
|
|
input_p = tokenizer_p.encode(
|
|
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
|
|
)
|
|
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
|
|
input_r = tokenizer_r.encode(
|
|
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
|
|
)
|
|
input_p = tokenizer_p.encode(
|
|
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
|
|
)
|
|
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
|
|
input_r = tokenizer_r.encode("This is a simple input", "This is a pair", padding=True)
|
|
input_p = tokenizer_p.encode("This is a simple input", "This is a pair", padding="longest")
|
|
self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
|
|
|
|
# Encode_plus - Simple input
|
|
input_r = tokenizer_r.encode_plus(
|
|
"This is a simple input", max_length=max_length, pad_to_max_length=True
|
|
)
|
|
input_p = tokenizer_p.encode_plus(
|
|
"This is a simple input", max_length=max_length, pad_to_max_length=True
|
|
)
|
|
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
|
|
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
|
|
input_r = tokenizer_r.encode_plus(
|
|
"This is a simple input", max_length=max_length, padding="max_length"
|
|
)
|
|
input_p = tokenizer_p.encode_plus(
|
|
"This is a simple input", max_length=max_length, padding="max_length"
|
|
)
|
|
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
|
|
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
|
|
|
|
input_r = tokenizer_r.encode_plus("This is a simple input", padding="longest")
|
|
input_p = tokenizer_p.encode_plus("This is a simple input", padding=True)
|
|
self.assert_padded_input_match(
|
|
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
|
|
)
|
|
|
|
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
|
|
|
|
# Encode_plus - Pair input
|
|
input_r = tokenizer_r.encode_plus(
|
|
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
|
|
)
|
|
input_p = tokenizer_p.encode_plus(
|
|
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
|
|
)
|
|
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
|
|
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
|
|
input_r = tokenizer_r.encode_plus(
|
|
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
|
|
)
|
|
input_p = tokenizer_p.encode_plus(
|
|
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
|
|
)
|
|
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
|
|
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
|
|
input_r = tokenizer_r.encode_plus("This is a simple input", "This is a pair", padding="longest")
|
|
input_p = tokenizer_p.encode_plus("This is a simple input", "This is a pair", padding=True)
|
|
self.assert_padded_input_match(
|
|
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
|
|
)
|
|
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
|
|
|
|
# Batch_encode_plus - Simple input
|
|
input_r = tokenizer_r.batch_encode_plus(
|
|
["This is a simple input 1", "This is a simple input 2"],
|
|
max_length=max_length,
|
|
pad_to_max_length=True,
|
|
)
|
|
input_p = tokenizer_p.batch_encode_plus(
|
|
["This is a simple input 1", "This is a simple input 2"],
|
|
max_length=max_length,
|
|
pad_to_max_length=True,
|
|
)
|
|
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
|
|
|
|
input_r = tokenizer_r.batch_encode_plus(
|
|
["This is a simple input 1", "This is a simple input 2"],
|
|
max_length=max_length,
|
|
padding="max_length",
|
|
)
|
|
input_p = tokenizer_p.batch_encode_plus(
|
|
["This is a simple input 1", "This is a simple input 2"],
|
|
max_length=max_length,
|
|
padding="max_length",
|
|
)
|
|
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
|
|
|
|
input_r = tokenizer_r.batch_encode_plus(
|
|
["This is a simple input 1", "This is a simple input 2"],
|
|
max_length=max_length,
|
|
padding="longest",
|
|
)
|
|
input_p = tokenizer_p.batch_encode_plus(
|
|
["This is a simple input 1", "This is a simple input 2"],
|
|
max_length=max_length,
|
|
padding=True,
|
|
)
|
|
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
|
|
|
|
input_r = tokenizer_r.batch_encode_plus(
|
|
["This is a simple input 1", "This is a simple input 2"], padding="longest"
|
|
)
|
|
input_p = tokenizer_p.batch_encode_plus(
|
|
["This is a simple input 1", "This is a simple input 2"], padding=True
|
|
)
|
|
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
|
|
|
|
# Batch_encode_plus - Pair input
|
|
input_r = tokenizer_r.batch_encode_plus(
|
|
[
|
|
("This is a simple input 1", "This is a simple input 2"),
|
|
("This is a simple pair 1", "This is a simple pair 2"),
|
|
],
|
|
max_length=max_length,
|
|
truncation=True,
|
|
padding="max_length",
|
|
)
|
|
input_p = tokenizer_p.batch_encode_plus(
|
|
[
|
|
("This is a simple input 1", "This is a simple input 2"),
|
|
("This is a simple pair 1", "This is a simple pair 2"),
|
|
],
|
|
max_length=max_length,
|
|
truncation=True,
|
|
padding="max_length",
|
|
)
|
|
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
|
|
|
|
input_r = tokenizer_r.batch_encode_plus(
|
|
[
|
|
("This is a simple input 1", "This is a simple input 2"),
|
|
("This is a simple pair 1", "This is a simple pair 2"),
|
|
],
|
|
padding=True,
|
|
)
|
|
input_p = tokenizer_p.batch_encode_plus(
|
|
[
|
|
("This is a simple input 1", "This is a simple input 2"),
|
|
("This is a simple pair 1", "This is a simple pair 2"),
|
|
],
|
|
padding="longest",
|
|
)
|
|
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
|
|
|
|
# Using pad on single examples after tokenization
|
|
input_r = tokenizer_r.encode_plus("This is a input 1")
|
|
input_r = tokenizer_r.pad(input_r)
|
|
|
|
input_p = tokenizer_p.encode_plus("This is a input 1")
|
|
input_p = tokenizer_p.pad(input_p)
|
|
|
|
self.assert_padded_input_match(
|
|
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
|
|
)
|
|
|
|
# Using pad on single examples after tokenization
|
|
input_r = tokenizer_r.encode_plus("This is a input 1")
|
|
input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")
|
|
|
|
input_p = tokenizer_p.encode_plus("This is a input 1")
|
|
input_p = tokenizer_p.pad(input_p, max_length=max_length, padding="max_length")
|
|
|
|
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
|
|
|
|
# Using pad after tokenization
|
|
input_r = tokenizer_r.batch_encode_plus(
|
|
["This is a input 1", "This is a much longer input whilch should be padded"]
|
|
)
|
|
input_r = tokenizer_r.pad(input_r)
|
|
|
|
input_p = tokenizer_p.batch_encode_plus(
|
|
["This is a input 1", "This is a much longer input whilch should be padded"]
|
|
)
|
|
input_p = tokenizer_p.pad(input_p)
|
|
|
|
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
|
|
|
|
# Using pad after tokenization
|
|
input_r = tokenizer_r.batch_encode_plus(
|
|
["This is a input 1", "This is a much longer input whilch should be padded"]
|
|
)
|
|
input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")
|
|
|
|
input_p = tokenizer_p.batch_encode_plus(
|
|
["This is a input 1", "This is a much longer input whilch should be padded"]
|
|
)
|
|
input_p = tokenizer_p.pad(input_p, max_length=max_length, padding="max_length")
|
|
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
|
|
|
|
# Test padding nested empty lists (in some use-cases, there is no any token id in the `input_ids` list).
|
|
input_r = tokenizer_r.pad({"input_ids": [[], []]}, max_length=max_length, padding="max_length")
|
|
input_p = tokenizer_p.pad({"input_ids": [[], []]}, max_length=max_length, padding="max_length")
|
|
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
|
|
|
|
def test_padding_different_model_input_name(self):
|
|
if not self.test_slow_tokenizer:
|
|
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
|
|
return
|
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id)
|
|
pad_token_id = tokenizer_p.pad_token_id
|
|
|
|
input_r = tokenizer_r.batch_encode_plus(
|
|
["This is a input 1", "This is a much longer input whilch should be padded"]
|
|
)
|
|
input_p = tokenizer_r.batch_encode_plus(
|
|
["This is a input 1", "This is a much longer input whilch should be padded"]
|
|
)
|
|
|
|
# rename encoded batch to "inputs"
|
|
input_r["inputs"] = input_r[tokenizer_r.model_input_names[0]]
|
|
del input_r[tokenizer_r.model_input_names[0]]
|
|
|
|
input_p["inputs"] = input_p[tokenizer_p.model_input_names[0]]
|
|
del input_p[tokenizer_p.model_input_names[0]]
|
|
|
|
# Renaming `input_ids` to `inputs`
|
|
tokenizer_r.model_input_names = ["inputs"] + tokenizer_r.model_input_names[1:]
|
|
tokenizer_p.model_input_names = ["inputs"] + tokenizer_p.model_input_names[1:]
|
|
|
|
input_r = tokenizer_r.pad(input_r, padding="longest")
|
|
input_p = tokenizer_r.pad(input_p, padding="longest")
|
|
|
|
max_length = len(input_p["inputs"][0])
|
|
self.assert_batch_padded_input_match(
|
|
input_r, input_p, max_length, pad_token_id, model_main_input_name="inputs"
|
|
)
|
|
|
|
def test_save_pretrained(self):
|
|
if not self.test_slow_tokenizer:
|
|
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
|
|
return
|
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
tmpdirname2 = tempfile.mkdtemp()
|
|
|
|
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
|
|
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
|
|
|
|
# make sure that all ".json" files are saved in the correct format
|
|
for file_path in tokenizer_r_files + tokenizer_p_files:
|
|
if os.path.exists(file_path) and file_path.endswith(".json"):
|
|
check_json_file_has_correct_format(file_path)
|
|
|
|
# Checks it save with the same files + the tokenizer.json file for the fast one
|
|
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
|
|
tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f)
|
|
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)
|
|
|
|
# Checks everything loads correctly in the same way
|
|
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
|
|
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
|
|
|
|
# Check special tokens are set accordingly on Rust and Python
|
|
for key in tokenizer_pp.special_tokens_map:
|
|
self.assertTrue(hasattr(tokenizer_rp, key))
|
|
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
|
|
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
|
|
|
|
shutil.rmtree(tmpdirname2)
|
|
|
|
# Save tokenizer rust, legacy_format=True
|
|
tmpdirname2 = tempfile.mkdtemp()
|
|
|
|
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True)
|
|
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
|
|
|
|
# Checks it save with the same files
|
|
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)
|
|
|
|
# Checks everything loads correctly in the same way
|
|
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
|
|
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
|
|
|
|
# Check special tokens are set accordingly on Rust and Python
|
|
for key in tokenizer_pp.special_tokens_map:
|
|
self.assertTrue(hasattr(tokenizer_rp, key))
|
|
|
|
shutil.rmtree(tmpdirname2)
|
|
|
|
# Save tokenizer rust, legacy_format=False
|
|
tmpdirname2 = tempfile.mkdtemp()
|
|
|
|
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False)
|
|
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
|
|
|
|
# Checks it saved the tokenizer.json file
|
|
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
|
|
|
|
# Checks everything loads correctly in the same way
|
|
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
|
|
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
|
|
|
|
# Check special tokens are set accordingly on Rust and Python
|
|
for key in tokenizer_pp.special_tokens_map:
|
|
self.assertTrue(hasattr(tokenizer_rp, key))
|
|
|
|
shutil.rmtree(tmpdirname2)
|
|
|
|
def test_embeded_special_tokens(self):
|
|
if not self.test_slow_tokenizer:
|
|
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
|
|
return
|
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
sentence = "A, <mask> AllenNLP sentence."
|
|
tokens_r = tokenizer_r.encode_plus(
|
|
sentence,
|
|
add_special_tokens=True,
|
|
)
|
|
tokens_p = tokenizer_p.encode_plus(
|
|
sentence,
|
|
add_special_tokens=True,
|
|
)
|
|
|
|
for key in tokens_p.keys():
|
|
self.assertEqual(tokens_r[key], tokens_p[key])
|
|
|
|
if "token_type_ids" in tokens_r:
|
|
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
|
|
|
|
tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
|
|
tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
|
|
self.assertSequenceEqual(tokens_r, tokens_p)
|
|
|
|
def test_compare_add_special_tokens(self):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False)
|
|
# pair_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=True)
|
|
|
|
for text in ["", " "]:
|
|
# tokenize()
|
|
no_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=False)
|
|
with_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=True)
|
|
self.assertEqual(
|
|
len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add
|
|
)
|
|
|
|
# encode()
|
|
no_special_tokens = tokenizer_r.encode(text, add_special_tokens=False)
|
|
with_special_tokens = tokenizer_r.encode(text, add_special_tokens=True)
|
|
self.assertEqual(
|
|
len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add
|
|
)
|
|
|
|
# encode_plus()
|
|
no_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=False)
|
|
with_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=True)
|
|
for key in no_special_tokens.keys():
|
|
self.assertEqual(
|
|
len(no_special_tokens[key]),
|
|
len(with_special_tokens[key]) - simple_num_special_tokens_to_add,
|
|
)
|
|
|
|
# # batch_encode_plus
|
|
no_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=False)
|
|
with_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=True)
|
|
for key in no_special_tokens.keys():
|
|
for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]):
|
|
self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add)
|
|
|
|
def test_compare_prepare_for_model(self):
|
|
if not self.test_slow_tokenizer:
|
|
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
|
|
return
|
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
string_sequence = "Asserting that both tokenizers are equal"
|
|
python_output = tokenizer_p.prepare_for_model(
|
|
tokenizer_p.encode(string_sequence, add_special_tokens=False)
|
|
)
|
|
rust_output = tokenizer_r.prepare_for_model(
|
|
tokenizer_r.encode(string_sequence, add_special_tokens=False)
|
|
)
|
|
for key in python_output:
|
|
self.assertEqual(python_output[key], rust_output[key])
|
|
|
|
def test_special_tokens_initialization(self):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
added_tokens = [AddedToken("<special>", lstrip=True)]
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, additional_special_tokens=added_tokens, **kwargs
|
|
)
|
|
r_output = tokenizer_r.encode("Hey this is a <special> token")
|
|
|
|
special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]
|
|
|
|
self.assertTrue(special_token_id in r_output)
|
|
|
|
if self.test_slow_tokenizer:
|
|
# in rust fast, you lose the information of the AddedToken when initializing with `additional_special_tokens`
|
|
tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True
|
|
)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(
|
|
pretrained_name, additional_special_tokens=added_tokens, **kwargs
|
|
)
|
|
|
|
p_output = tokenizer_p.encode("Hey this is a <special> token")
|
|
|
|
cr_output = tokenizer_cr.encode("Hey this is a <special> token")
|
|
|
|
self.assertEqual(p_output, r_output)
|
|
self.assertEqual(cr_output, r_output)
|
|
self.assertTrue(special_token_id in p_output)
|
|
self.assertTrue(special_token_id in cr_output)
|
|
|
|
def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self):
|
|
# This test no longer support rust tokenizers, because the only file that should be looked
|
|
# at by the fast tokenizer with the new saving format is `tokenizer_config.json`.
|
|
# The previous behaviour is very strange too. Fast tokenizer should not save 3 files, but just one. Can never do slow from fast.
|
|
tokenizer_list = []
|
|
if self.test_slow_tokenizer:
|
|
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))
|
|
|
|
for tokenizer_class, tokenizer_utils in tokenizer_list:
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
tokenizer_utils.save_pretrained(tmp_dir)
|
|
# only legacy save will check this
|
|
tokenizer_path = "tokenizer_config.json"
|
|
with open(os.path.join(tmp_dir, tokenizer_path), encoding="utf-8") as json_file:
|
|
tokenizer_config = json.load(json_file)
|
|
|
|
tokenizer_config["additional_special_tokens"] = ["an_additional_special_token"]
|
|
|
|
with open(os.path.join(tmp_dir, tokenizer_path), "w", encoding="utf-8") as outfile:
|
|
json.dump(tokenizer_config, outfile)
|
|
|
|
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
|
|
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
|
|
# "special_tokens_map.json" files
|
|
|
|
# TODO ArthurZ ... Ok so for legacy we have to support this I guess..... (special_tokens_map + additional)
|
|
tokenizer_without_change_in_init = tokenizer_class.from_pretrained(tmp_dir)
|
|
self.assertIn(
|
|
"an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens
|
|
)
|
|
self.assertIn("an_additional_special_token", tokenizer_without_change_in_init.get_vocab())
|
|
self.assertEqual(
|
|
["an_additional_special_token"],
|
|
tokenizer_without_change_in_init.convert_ids_to_tokens(
|
|
tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"])
|
|
),
|
|
)
|
|
|
|
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
|
|
new_added_tokens = [AddedToken("a_new_additional_special_token", lstrip=True)]
|
|
tokenizer = tokenizer_class.from_pretrained(
|
|
tmp_dir,
|
|
additional_special_tokens=new_added_tokens,
|
|
)
|
|
|
|
self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens)
|
|
self.assertEqual(
|
|
["a_new_additional_special_token"],
|
|
tokenizer.convert_ids_to_tokens(
|
|
tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"])
|
|
),
|
|
)
|
|
|
|
def test_training_new_tokenizer(self):
|
|
# This feature only exists for fast tokenizers
|
|
if not self.test_rust_tokenizer:
|
|
return
|
|
|
|
tokenizer = self.get_rust_tokenizer()
|
|
new_tokenizer = tokenizer.train_new_from_iterator(SMALL_TRAINING_CORPUS, 100)
|
|
|
|
# Test we can use the new tokenizer with something not seen during training
|
|
inputs = new_tokenizer(["This is the first sentence", "This sentence is different 🤗."])
|
|
self.assertEqual(len(inputs["input_ids"]), 2)
|
|
decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
|
|
expected_result = "This is the first sentence"
|
|
|
|
if tokenizer.backend_tokenizer.normalizer is not None:
|
|
expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result)
|
|
self.assertEqual(expected_result, decoded_input)
|
|
|
|
# We check that the parameters of the tokenizer remained the same
|
|
# Check we have the same number of added_tokens for both pair and non-pair inputs.
|
|
self.assertEqual(tokenizer.num_special_tokens_to_add(False), new_tokenizer.num_special_tokens_to_add(False))
|
|
self.assertEqual(tokenizer.num_special_tokens_to_add(True), new_tokenizer.num_special_tokens_to_add(True))
|
|
|
|
# Check we have the correct max_length for both pair and non-pair inputs.
|
|
self.assertEqual(tokenizer.max_len_single_sentence, new_tokenizer.max_len_single_sentence)
|
|
self.assertEqual(tokenizer.max_len_sentences_pair, new_tokenizer.max_len_sentences_pair)
|
|
|
|
# Assert the set of special tokens match as we didn't ask to change them
|
|
self.assertSequenceEqual(
|
|
tokenizer.all_special_tokens_extended,
|
|
new_tokenizer.all_special_tokens_extended,
|
|
)
|
|
|
|
self.assertDictEqual(tokenizer.special_tokens_map, new_tokenizer.special_tokens_map)
|
|
|
|
def test_training_new_tokenizer_with_special_tokens_change(self):
|
|
# This feature only exists for fast tokenizers
|
|
if not self.test_rust_tokenizer:
|
|
return
|
|
|
|
tokenizer = self.get_rust_tokenizer()
|
|
# Test with a special tokens map
|
|
class_signature = inspect.signature(tokenizer.__class__)
|
|
if "cls_token" in class_signature.parameters:
|
|
new_tokenizer = tokenizer.train_new_from_iterator(
|
|
SMALL_TRAINING_CORPUS, 100, special_tokens_map={tokenizer.cls_token: "<cls>"}
|
|
)
|
|
cls_id = new_tokenizer.get_vocab()["<cls>"]
|
|
self.assertEqual(new_tokenizer.cls_token, "<cls>")
|
|
self.assertEqual(new_tokenizer.cls_token_id, cls_id)
|
|
|
|
# Create a new mapping from the special tokens defined in the original tokenizer
|
|
special_tokens_list = SpecialTokensMixin.SPECIAL_TOKENS_ATTRIBUTES.copy()
|
|
special_tokens_list.remove("additional_special_tokens")
|
|
special_tokens_map = {}
|
|
for token in special_tokens_list:
|
|
# Get the private one to avoid unnecessary warnings.
|
|
if getattr(tokenizer, f"_{token}") is not None:
|
|
special_token = getattr(tokenizer, token)
|
|
special_tokens_map[special_token] = f"{special_token}a"
|
|
|
|
# Train new tokenizer
|
|
new_tokenizer = tokenizer.train_new_from_iterator(
|
|
SMALL_TRAINING_CORPUS, 100, special_tokens_map=special_tokens_map
|
|
)
|
|
|
|
# Check the changes
|
|
for token in special_tokens_list:
|
|
# Get the private one to avoid unnecessary warnings.
|
|
if getattr(tokenizer, f"_{token}") is None:
|
|
continue
|
|
special_token = getattr(tokenizer, token)
|
|
if special_token in special_tokens_map:
|
|
new_special_token = getattr(new_tokenizer, token)
|
|
self.assertEqual(special_tokens_map[special_token], new_special_token)
|
|
|
|
new_id = new_tokenizer.get_vocab()[new_special_token]
|
|
self.assertEqual(getattr(new_tokenizer, f"{token}_id"), new_id)
|
|
|
|
# Check if the AddedToken / string format has been kept
|
|
for special_token in tokenizer.all_special_tokens_extended:
|
|
if isinstance(special_token, AddedToken) and special_token.content not in special_tokens_map:
|
|
# The special token must appear identically in the list of the new tokenizer.
|
|
self.assertTrue(
|
|
special_token in new_tokenizer.all_special_tokens_extended,
|
|
f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}",
|
|
)
|
|
elif isinstance(special_token, AddedToken):
|
|
# The special token must appear in the list of the new tokenizer as an object of type AddedToken with
|
|
# the same parameters as the old AddedToken except the content that the user has requested to change.
|
|
special_token_str = special_token.content
|
|
new_special_token_str = special_tokens_map[special_token_str]
|
|
|
|
find = False
|
|
for candidate in new_tokenizer.all_special_tokens_extended:
|
|
if (
|
|
isinstance(candidate, AddedToken)
|
|
and candidate.content == new_special_token_str
|
|
and candidate.lstrip == special_token.lstrip
|
|
and candidate.rstrip == special_token.rstrip
|
|
and candidate.normalized == special_token.normalized
|
|
and candidate.single_word == special_token.single_word
|
|
):
|
|
find = True
|
|
break
|
|
special_token.content = new_special_token_str
|
|
self.assertTrue(
|
|
find,
|
|
f"'{special_token.__repr__()}' should appear as an `AddedToken` in the all_special_tokens_extended = "
|
|
f"{[k for k in new_tokenizer.all_special_tokens_extended if str(k)==new_special_token_str]} but it is missing"
|
|
", this means that the new tokenizers did not keep the `rstrip`, `lstrip`, `normalized` etc attributes.",
|
|
)
|
|
elif special_token not in special_tokens_map:
|
|
# The special token must appear identically in the list of the new tokenizer.
|
|
self.assertTrue(
|
|
special_token in new_tokenizer.all_special_tokens_extended,
|
|
f"'{special_token.__repr__()}' should be in {new_tokenizer.all_special_tokens_extended}",
|
|
)
|
|
|
|
else:
|
|
# The special token must appear in the list of the new tokenizer as an object of type string.
|
|
self.assertTrue(special_tokens_map[special_token] in new_tokenizer.all_special_tokens_extended)
|
|
|
|
# Test we can use the new tokenizer with something not seen during training
|
|
inputs = new_tokenizer(["This is the first sentence", "This sentence is different 🤗."])
|
|
self.assertEqual(len(inputs["input_ids"]), 2)
|
|
decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
|
|
expected_result = "This is the first sentence"
|
|
|
|
if tokenizer.backend_tokenizer.normalizer is not None:
|
|
expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result)
|
|
self.assertEqual(expected_result, decoded_input)
|
|
|
|
def test_tokenizer_mismatch_warning(self):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
with self.assertLogs("transformers", level="WARNING") as cm:
|
|
try:
|
|
if self.tokenizer_class == BertTokenizer:
|
|
AlbertTokenizer.from_pretrained(pretrained_name)
|
|
else:
|
|
BertTokenizer.from_pretrained(pretrained_name)
|
|
except EnvironmentError as e:
|
|
# Some tokenizer will raised an error before reaching the logged warning because there are no
|
|
# corresponding files to load
|
|
error_message = str(e)
|
|
except (TypeError, AttributeError):
|
|
# Some tokenizers cannot be loaded into the target tokenizer at all and errors are returned,
|
|
# here we just check that the warning has been logged before the error is raised
|
|
pass
|
|
finally:
|
|
logged_msg_target = (
|
|
"The tokenizer class you load from this checkpoint is not the same type as the class "
|
|
"this function is called from."
|
|
)
|
|
raised_error_msg_target = "Can't load tokenizer for"
|
|
self.assertTrue(
|
|
cm.records[0].message.startswith(logged_msg_target)
|
|
if len(cm.records) > 0
|
|
else False or raised_error_msg_target in error_message
|
|
)
|
|
try:
|
|
if self.rust_tokenizer_class == BertTokenizerFast:
|
|
AlbertTokenizerFast.from_pretrained(pretrained_name)
|
|
else:
|
|
BertTokenizerFast.from_pretrained(pretrained_name)
|
|
except (TypeError, AttributeError):
|
|
# Some tokenizers cannot be loaded into the target tokenizer at all and errors are returned,
|
|
# here we just check that the warning has been logged before the error is raised
|
|
pass
|
|
finally:
|
|
self.assertTrue(
|
|
cm.records[0].message.startswith(
|
|
"The tokenizer class you load from this checkpoint is not the same type as the class"
|
|
" this function is called from."
|
|
)
|
|
)
|
|
|
|
@require_torch
|
|
def test_saving_tokenizer_trainer(self):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
# Save the fast tokenizer files in a temporary directory
|
|
tokenizer_old = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs, use_fast=True)
|
|
tokenizer_old.save_pretrained(tmp_dir, legacy_format=False) # save only fast version
|
|
|
|
# Initialize toy model for the trainer
|
|
model = nn.Module()
|
|
|
|
# Load tokenizer from a folder without legacy files
|
|
tokenizer = self.rust_tokenizer_class.from_pretrained(tmp_dir)
|
|
training_args = TrainingArguments(output_dir=tmp_dir, do_train=True, no_cuda=True)
|
|
trainer = Trainer(model=model, args=training_args, tokenizer=tokenizer)
|
|
|
|
# Should not raise an error
|
|
trainer.save_model(os.path.join(tmp_dir, "checkpoint"))
|
|
self.assertIn("tokenizer.json", os.listdir(os.path.join(tmp_dir, "checkpoint")))
|
|
|
|
def test_convert_tokens_to_string_format(self):
|
|
tokenizers = self.get_tokenizers(fast=True, do_lower_case=True)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
tokens = ["this", "is", "a", "test"]
|
|
string = tokenizer.convert_tokens_to_string(tokens)
|
|
|
|
self.assertIsInstance(string, str)
|
|
|
|
def test_save_slow_from_fast_and_reload_fast(self):
|
|
if not self.test_slow_tokenizer or not self.test_rust_tokenizer:
|
|
# we need both slow and fast versions
|
|
return
|
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
with tempfile.TemporaryDirectory() as tmp_dir_1:
|
|
# Here we check that even if we have initialized a fast tokenizer with a tokenizer_file we can
|
|
# still save only the slow version and use these saved files to rebuild a tokenizer
|
|
tokenizer_fast_old_1 = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, **kwargs, use_fast=True
|
|
)
|
|
tokenizer_file = os.path.join(tmp_dir_1, "tokenizer.json")
|
|
tokenizer_fast_old_1.backend_tokenizer.save(tokenizer_file)
|
|
|
|
tokenizer_fast_old_2 = self.rust_tokenizer_class.from_pretrained(
|
|
pretrained_name, **kwargs, use_fast=True, tokenizer_file=tokenizer_file
|
|
)
|
|
|
|
tokenizer_fast_old_2.save_pretrained(tmp_dir_1, legacy_format=True) # save only slow version
|
|
|
|
tokenizer_slow = self.tokenizer_class.from_pretrained(tmp_dir_1)
|
|
with tempfile.TemporaryDirectory() as tmp_dir_2:
|
|
tokenizer_slow.save_pretrained(tmp_dir_2)
|
|
|
|
# Should not raise an error
|
|
self.rust_tokenizer_class.from_pretrained(tmp_dir_2)
|
|
|
|
# TODO This is ran for all models but only tests bert...
|
|
def test_clean_up_tokenization_spaces(self):
|
|
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
|
assert tokenizer.clean_up_tokenization_spaces is True
|
|
|
|
tokens = tokenizer.encode("This shouldn't be! He'll go.")
|
|
decoded = tokenizer.decode(tokens)
|
|
assert decoded == "[CLS] this shouldn't be! he'll go. [SEP]"
|
|
|
|
tokenizer.clean_up_tokenization_spaces = False
|
|
decoded = tokenizer.decode(tokens)
|
|
assert decoded == "[CLS] this shouldn ' t be ! he ' ll go . [SEP]"
|
|
assert decoded == tokenizer.decode(tokens, clean_up_tokenization_spaces=False)
|
|
|
|
# Fast from slow
|
|
with tempfile.TemporaryDirectory() as tmp_dir_2:
|
|
tokenizer.save_pretrained(tmp_dir_2)
|
|
tokenizer_fast = BertTokenizerFast.from_pretrained(tmp_dir_2)
|
|
del tokenizer
|
|
|
|
assert tokenizer_fast.clean_up_tokenization_spaces is False
|
|
decoded = tokenizer_fast.decode(tokens)
|
|
# fast and slow don't have the same output when we don't cleanup
|
|
# tokenization space. Here `be!` vs `be !` and `go.` vs `go .`
|
|
assert decoded == "[CLS] this shouldn ' t be! he ' ll go. [SEP]"
|
|
|
|
tokenizer_fast.clean_up_tokenization_spaces = True
|
|
assert tokenizer_fast.clean_up_tokenization_spaces is True
|
|
|
|
decoded = tokenizer_fast.decode(tokens)
|
|
assert decoded == "[CLS] this shouldn't be! he'll go. [SEP]"
|
|
|
|
# Slow from fast
|
|
with tempfile.TemporaryDirectory() as tmp_dir_2:
|
|
tokenizer_fast.clean_up_tokenization_spaces = False
|
|
tokenizer_fast.save_pretrained(tmp_dir_2)
|
|
tokenizer = BertTokenizer.from_pretrained(tmp_dir_2)
|
|
|
|
assert tokenizer.clean_up_tokenization_spaces is False
|
|
decoded = tokenizer.decode(tokens)
|
|
assert decoded == "[CLS] this shouldn ' t be ! he ' ll go . [SEP]"
|
|
|
|
tokenizer.clean_up_tokenization_spaces = True
|
|
decoded = tokenizer.decode(tokens)
|
|
assert decoded == "[CLS] this shouldn't be! he'll go. [SEP]"
|
|
|
|
def test_split_special_tokens(self):
|
|
if not self.test_slow_tokenizer:
|
|
return
|
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
special_token = "[SPECIAL_TOKEN]"
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
if not tokenizer.is_fast:
|
|
# bloom, gptneox etc only have a fast
|
|
tokenizer.add_special_tokens(
|
|
{
|
|
"additional_special_tokens": [
|
|
AddedToken(special_token, rstrip=True, lstrip=True, normalized=True, special=True)
|
|
]
|
|
}
|
|
)
|
|
encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False)
|
|
self.assertEqual(len(encoded_special_token), 1)
|
|
|
|
encoded_split_special_token = tokenizer.encode(
|
|
special_token, add_special_tokens=False, split_special_tokens=True
|
|
)
|
|
if len(encoded_split_special_token) == 1:
|
|
# if we have subword tokenization or special vocab
|
|
self.assertTrue(
|
|
encoded_split_special_token[0] != tokenizer.convert_tokens_to_ids(special_token)
|
|
)
|
|
else:
|
|
self.assertTrue(len(encoded_split_special_token) > 1)
|
|
|
|
def test_added_tokens_serialization(self):
|
|
# Utility to test the added vocab
|
|
def _test_added_vocab_and_eos(expected, tokenizer_class, expected_eos, temp_dir):
|
|
tokenizer = tokenizer_class.from_pretrained(temp_dir)
|
|
self.assertTrue(str(expected_eos) not in tokenizer.additional_special_tokens)
|
|
self.assertIn(new_eos, tokenizer.added_tokens_decoder.values())
|
|
self.assertEqual(tokenizer.added_tokens_decoder[tokenizer.eos_token_id], new_eos)
|
|
self.assertDictEqual(expected, tokenizer.added_tokens_decoder)
|
|
return tokenizer
|
|
|
|
new_eos = AddedToken("[NEW_EOS]", rstrip=False, lstrip=True, normalized=False, special=True)
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
# Load a slow tokenizer from the hub, init with the new token for fast to also include it
|
|
tokenizer = self.tokenizer_class.from_pretrained(pretrained_name, eos_token=new_eos)
|
|
EXPECTED_ADDED_TOKENS_DECODER = tokenizer.added_tokens_decoder
|
|
with self.subTest("Hub -> Slow: Test loading a slow tokenizer from the hub)"):
|
|
self.assertEqual(tokenizer._eos_token, new_eos)
|
|
self.assertIn(new_eos, list(tokenizer.added_tokens_decoder.values()))
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_2:
|
|
tokenizer.save_pretrained(tmp_dir_2)
|
|
with self.subTest(
|
|
"Hub -> Slow -> Slow: Test saving this slow tokenizer and reloading it in the fast class"
|
|
):
|
|
_test_added_vocab_and_eos(
|
|
EXPECTED_ADDED_TOKENS_DECODER, self.tokenizer_class, new_eos, tmp_dir_2
|
|
)
|
|
|
|
if self.rust_tokenizer_class is not None:
|
|
with self.subTest(
|
|
"Hub -> Slow -> Fast: Test saving this slow tokenizer and reloading it in the fast class"
|
|
):
|
|
tokenizer_fast = _test_added_vocab_and_eos(
|
|
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_2
|
|
)
|
|
with tempfile.TemporaryDirectory() as tmp_dir_3:
|
|
tokenizer_fast.save_pretrained(tmp_dir_3)
|
|
with self.subTest(
|
|
"Hub -> Slow -> Fast -> Fast: Test saving this fast tokenizer and reloading it in the fast class"
|
|
):
|
|
_test_added_vocab_and_eos(
|
|
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_3
|
|
)
|
|
|
|
with self.subTest(
|
|
"Hub -> Slow -> Fast -> Slow: Test saving this slow tokenizer and reloading it in the slow class"
|
|
):
|
|
_test_added_vocab_and_eos(
|
|
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_3
|
|
)
|
|
|
|
with self.subTest("Hub -> Fast: Test loading a fast tokenizer from the hub)"):
|
|
if self.rust_tokenizer_class is not None:
|
|
tokenizer_fast = self.rust_tokenizer_class.from_pretrained(pretrained_name, eos_token=new_eos)
|
|
self.assertEqual(tokenizer_fast._eos_token, new_eos)
|
|
self.assertIn(new_eos, list(tokenizer_fast.added_tokens_decoder.values()))
|
|
# We can't test the following because for BC we kept the default rstrip lstrip in slow not fast. Will comment once normalization is alright
|
|
with self.subTest("Hub -> Fast == Hub -> Slow: make sure slow and fast tokenizer match"):
|
|
self.assertDictEqual(EXPECTED_ADDED_TOKENS_DECODER, tokenizer_fast.added_tokens_decoder)
|
|
|
|
EXPECTED_ADDED_TOKENS_DECODER = tokenizer_fast.added_tokens_decoder
|
|
with tempfile.TemporaryDirectory() as tmp_dir_4:
|
|
tokenizer_fast.save_pretrained(tmp_dir_4)
|
|
with self.subTest("Hub -> Fast -> Fast: saving Fast1 locally and loading"):
|
|
_test_added_vocab_and_eos(
|
|
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_4
|
|
)
|
|
|
|
with self.subTest("Hub -> Fast -> Slow: saving Fast1 locally and loading"):
|
|
_test_added_vocab_and_eos(
|
|
EXPECTED_ADDED_TOKENS_DECODER, self.tokenizer_class, new_eos, tmp_dir_4
|
|
)
|
|
|
|
def test_special_token_addition(self):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
# Create tokenizer and add an additional special token
|
|
tokenizer_1 = tokenizer.from_pretrained(pretrained_name)
|
|
tokenizer_1.add_special_tokens({"additional_special_tokens": ["<tok>"]})
|
|
self.assertEqual(tokenizer_1.additional_special_tokens, ["<tok>"])
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
tokenizer_1.save_pretrained(tmp_dir)
|
|
# Load the above tokenizer and add the same special token a second time
|
|
tokenizer_2 = tokenizer.from_pretrained(pretrained_name)
|
|
tokenizer_2.add_special_tokens({"additional_special_tokens": ["<tok>"]})
|
|
self.assertEqual(tokenizer_2.additional_special_tokens, ["<tok>"])
|
|
|
|
tokenizer_2.add_special_tokens({"additional_special_tokens": ["<tok>", "<other>"]})
|
|
self.assertEqual(tokenizer_2.additional_special_tokens, ["<tok>", "<other>"])
|
|
tokenizer_2.add_special_tokens({"additional_special_tokens": ["<other>", "<another>"]})
|
|
self.assertEqual(tokenizer_2.additional_special_tokens, ["<other>", "<another>"])
|
|
|
|
tokenizer_2.add_special_tokens(
|
|
{"additional_special_tokens": ["<tok>"]},
|
|
replace_additional_special_tokens=False,
|
|
)
|
|
self.assertEqual(tokenizer_2.additional_special_tokens, ["<other>", "<another>", "<tok>"])
|