transformers/tests/test_processing_common.py

129 lines
4.6 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import tempfile
import unittest
from transformers import CLIPTokenizerFast, ProcessorMixin
from transformers.models.auto.processing_auto import processor_class_from_name
from transformers.testing_utils import (
check_json_file_has_correct_format,
require_tokenizers,
require_torch,
require_vision,
)
from transformers.utils import is_vision_available
if is_vision_available():
from transformers import CLIPImageProcessor
@require_torch
class ProcessorTesterMixin:
processor_class = None
def prepare_processor_dict(self):
return {}
def get_component(self, attribute, **kwargs):
assert attribute in self.processor_class.attributes
component_class_name = getattr(self.processor_class, f"{attribute}_class")
if isinstance(component_class_name, tuple):
component_class_name = component_class_name[0]
component_class = processor_class_from_name(component_class_name)
component = component_class.from_pretrained(self.tmpdirname, **kwargs) # noqa
return component
def prepare_components(self):
components = {}
for attribute in self.processor_class.attributes:
component = self.get_component(attribute)
components[attribute] = component
return components
def get_processor(self):
components = self.prepare_components()
processor = self.processor_class(**components, **self.prepare_processor_dict())
return processor
def test_processor_to_json_string(self):
processor = self.get_processor()
obj = json.loads(processor.to_json_string())
for key, value in self.prepare_processor_dict().items():
self.assertEqual(obj[key], value)
self.assertEqual(getattr(processor, key, None), value)
def test_processor_from_and_save_pretrained(self):
processor_first = self.get_processor()
with tempfile.TemporaryDirectory() as tmpdirname:
saved_files = processor_first.save_pretrained(tmpdirname)
if len(saved_files) > 0:
check_json_file_has_correct_format(saved_files[0])
processor_second = self.processor_class.from_pretrained(tmpdirname)
self.assertEqual(processor_second.to_dict(), processor_first.to_dict())
class MyProcessor(ProcessorMixin):
attributes = ["image_processor", "tokenizer"]
image_processor_class = "CLIPImageProcessor"
tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, processor_attr_1=1, processor_attr_2=True):
super().__init__(image_processor, tokenizer)
self.processor_attr_1 = processor_attr_1
self.processor_attr_2 = processor_attr_2
@require_tokenizers
@require_vision
class ProcessorTest(unittest.TestCase):
processor_class = MyProcessor
def prepare_processor_dict(self):
return {"processor_attr_1": 1, "processor_attr_2": False}
def get_processor(self):
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14")
tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-large-patch14")
processor = MyProcessor(image_processor, tokenizer, **self.prepare_processor_dict())
return processor
def test_processor_to_json_string(self):
processor = self.get_processor()
obj = json.loads(processor.to_json_string())
for key, value in self.prepare_processor_dict().items():
self.assertEqual(obj[key], value)
self.assertEqual(getattr(processor, key, None), value)
def test_processor_from_and_save_pretrained(self):
processor_first = self.get_processor()
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = processor_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
processor_second = self.processor_class.from_pretrained(tmpdirname)
self.assertEqual(processor_second.to_dict(), processor_first.to_dict())