380 lines
16 KiB
Python
380 lines
16 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import json
|
|
import os
|
|
import pathlib
|
|
import tempfile
|
|
|
|
from transformers import BatchFeature
|
|
from transformers.image_utils import AnnotationFormat, AnnotionFormat
|
|
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
|
|
if is_torch_available():
|
|
import numpy as np
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
def prepare_image_inputs(
|
|
batch_size,
|
|
min_resolution,
|
|
max_resolution,
|
|
num_channels,
|
|
size_divisor=None,
|
|
equal_resolution=False,
|
|
numpify=False,
|
|
torchify=False,
|
|
):
|
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
|
or a list of PyTorch tensors if one specifies torchify=True.
|
|
|
|
One can specify whether the images are of the same resolution or not.
|
|
"""
|
|
|
|
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
|
|
|
|
image_inputs = []
|
|
for i in range(batch_size):
|
|
if equal_resolution:
|
|
width = height = max_resolution
|
|
else:
|
|
# To avoid getting image width/height 0
|
|
if size_divisor is not None:
|
|
# If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
|
|
min_resolution = max(size_divisor, min_resolution)
|
|
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
|
|
image_inputs.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
|
|
|
|
if not numpify and not torchify:
|
|
# PIL expects the channel dimension as last dimension
|
|
image_inputs = [Image.fromarray(np.moveaxis(image, 0, -1)) for image in image_inputs]
|
|
|
|
if torchify:
|
|
image_inputs = [torch.from_numpy(image) for image in image_inputs]
|
|
|
|
return image_inputs
|
|
|
|
|
|
def prepare_video(num_frames, num_channels, width=10, height=10, numpify=False, torchify=False):
|
|
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""
|
|
|
|
video = []
|
|
for i in range(num_frames):
|
|
video.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
|
|
|
|
if not numpify and not torchify:
|
|
# PIL expects the channel dimension as last dimension
|
|
video = [Image.fromarray(np.moveaxis(frame, 0, -1)) for frame in video]
|
|
|
|
if torchify:
|
|
video = [torch.from_numpy(frame) for frame in video]
|
|
|
|
return video
|
|
|
|
|
|
def prepare_video_inputs(
|
|
batch_size,
|
|
num_frames,
|
|
num_channels,
|
|
min_resolution,
|
|
max_resolution,
|
|
equal_resolution=False,
|
|
numpify=False,
|
|
torchify=False,
|
|
):
|
|
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
|
|
one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True.
|
|
|
|
One can specify whether the videos are of the same resolution or not.
|
|
"""
|
|
|
|
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
|
|
|
|
video_inputs = []
|
|
for i in range(batch_size):
|
|
if equal_resolution:
|
|
width = height = max_resolution
|
|
else:
|
|
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
|
|
video = prepare_video(
|
|
num_frames=num_frames,
|
|
num_channels=num_channels,
|
|
width=width,
|
|
height=height,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
video_inputs.append(video)
|
|
|
|
return video_inputs
|
|
|
|
|
|
class ImageProcessingTestMixin:
|
|
test_cast_dtype = None
|
|
|
|
def test_image_processor_to_json_string(self):
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
obj = json.loads(image_processor.to_json_string())
|
|
for key, value in self.image_processor_dict.items():
|
|
self.assertEqual(obj[key], value)
|
|
|
|
def test_image_processor_to_json_file(self):
|
|
image_processor_first = self.image_processing_class(**self.image_processor_dict)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
json_file_path = os.path.join(tmpdirname, "image_processor.json")
|
|
image_processor_first.to_json_file(json_file_path)
|
|
image_processor_second = self.image_processing_class.from_json_file(json_file_path)
|
|
|
|
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
|
|
|
|
def test_image_processor_from_and_save_pretrained(self):
|
|
image_processor_first = self.image_processing_class(**self.image_processor_dict)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
saved_file = image_processor_first.save_pretrained(tmpdirname)[0]
|
|
check_json_file_has_correct_format(saved_file)
|
|
image_processor_second = self.image_processing_class.from_pretrained(tmpdirname)
|
|
|
|
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
|
|
|
|
def test_init_without_params(self):
|
|
image_processor = self.image_processing_class()
|
|
self.assertIsNotNone(image_processor)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_cast_dtype_device(self):
|
|
if self.test_cast_dtype is not None:
|
|
# Initialize image_processor
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
|
|
# create random PyTorch tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
|
|
|
encoding = image_processor(image_inputs, return_tensors="pt")
|
|
# for layoutLM compatiblity
|
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
|
|
self.assertEqual(encoding.pixel_values.dtype, torch.float32)
|
|
|
|
encoding = image_processor(image_inputs, return_tensors="pt").to(torch.float16)
|
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
|
|
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
|
|
|
|
encoding = image_processor(image_inputs, return_tensors="pt").to("cpu", torch.bfloat16)
|
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
|
|
self.assertEqual(encoding.pixel_values.dtype, torch.bfloat16)
|
|
|
|
with self.assertRaises(TypeError):
|
|
_ = image_processor(image_inputs, return_tensors="pt").to(torch.bfloat16, "cpu")
|
|
|
|
# Try with text + image feature
|
|
encoding = image_processor(image_inputs, return_tensors="pt")
|
|
encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])})
|
|
encoding = encoding.to(torch.float16)
|
|
|
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
|
|
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
|
|
self.assertEqual(encoding.input_ids.dtype, torch.long)
|
|
|
|
def test_call_pil(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PIL images
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, Image.Image)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
|
self.assertEqual(
|
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
|
|
)
|
|
|
|
def test_call_numpy(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random numpy tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
|
self.assertEqual(
|
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
|
|
)
|
|
|
|
def test_call_pytorch(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PyTorch tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
|
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, torch.Tensor)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test batched
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
tuple(encoded_images.shape),
|
|
(self.image_processor_tester.batch_size, *expected_output_image_shape),
|
|
)
|
|
|
|
def test_call_numpy_4_channels(self):
|
|
# Test that can process images which have an arbitrary number of channels
|
|
# Initialize image_processing
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
|
|
# create random numpy tensors
|
|
self.image_processor_tester.num_channels = 4
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processor(
|
|
image_inputs[0],
|
|
return_tensors="pt",
|
|
input_data_format="channels_first",
|
|
image_mean=0,
|
|
image_std=1,
|
|
).pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test batched
|
|
encoded_images = image_processor(
|
|
image_inputs,
|
|
return_tensors="pt",
|
|
input_data_format="channels_first",
|
|
image_mean=0,
|
|
image_std=1,
|
|
).pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
|
self.assertEqual(
|
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
|
|
)
|
|
|
|
def test_image_processor_preprocess_arguments(self):
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
if hasattr(image_processor, "_valid_processor_keys") and hasattr(image_processor, "preprocess"):
|
|
preprocess_parameter_names = inspect.getfullargspec(image_processor.preprocess).args
|
|
preprocess_parameter_names.remove("self")
|
|
preprocess_parameter_names.sort()
|
|
valid_processor_keys = image_processor._valid_processor_keys
|
|
valid_processor_keys.sort()
|
|
self.assertEqual(preprocess_parameter_names, valid_processor_keys)
|
|
|
|
|
|
class AnnotationFormatTestMixin:
|
|
# this mixin adds a test to assert that usages of the
|
|
# to-be-deprecated `AnnotionFormat` continue to be
|
|
# supported for the time being
|
|
|
|
def test_processor_can_use_legacy_annotation_format(self):
|
|
image_processor_dict = self.image_processor_tester.prepare_image_processor_dict()
|
|
fixtures_path = pathlib.Path(__file__).parent / "fixtures" / "tests_samples" / "COCO"
|
|
|
|
with open(fixtures_path / "coco_annotations.txt", "r") as f:
|
|
detection_target = json.loads(f.read())
|
|
|
|
detection_annotations = {"image_id": 39769, "annotations": detection_target}
|
|
|
|
detection_params = {
|
|
"images": Image.open(fixtures_path / "000000039769.png"),
|
|
"annotations": detection_annotations,
|
|
"return_tensors": "pt",
|
|
}
|
|
|
|
with open(fixtures_path / "coco_panoptic_annotations.txt", "r") as f:
|
|
panoptic_target = json.loads(f.read())
|
|
|
|
panoptic_annotations = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": panoptic_target}
|
|
|
|
masks_path = pathlib.Path(fixtures_path / "coco_panoptic")
|
|
|
|
panoptic_params = {
|
|
"images": Image.open(fixtures_path / "000000039769.png"),
|
|
"annotations": panoptic_annotations,
|
|
"return_tensors": "pt",
|
|
"masks_path": masks_path,
|
|
}
|
|
|
|
test_cases = [
|
|
("coco_detection", detection_params),
|
|
("coco_panoptic", panoptic_params),
|
|
(AnnotionFormat.COCO_DETECTION, detection_params),
|
|
(AnnotionFormat.COCO_PANOPTIC, panoptic_params),
|
|
(AnnotationFormat.COCO_DETECTION, detection_params),
|
|
(AnnotationFormat.COCO_PANOPTIC, panoptic_params),
|
|
]
|
|
|
|
def _compare(a, b) -> None:
|
|
if isinstance(a, (dict, BatchFeature)):
|
|
self.assertEqual(a.keys(), b.keys())
|
|
for k, v in a.items():
|
|
_compare(v, b[k])
|
|
elif isinstance(a, list):
|
|
self.assertEqual(len(a), len(b))
|
|
for idx in range(len(a)):
|
|
_compare(a[idx], b[idx])
|
|
elif isinstance(a, torch.Tensor):
|
|
self.assertTrue(torch.allclose(a, b, atol=1e-3))
|
|
elif isinstance(a, str):
|
|
self.assertEqual(a, b)
|
|
|
|
for annotation_format, params in test_cases:
|
|
with self.subTest(annotation_format):
|
|
image_processor_params = {**image_processor_dict, **{"format": annotation_format}}
|
|
image_processor_first = self.image_processing_class(**image_processor_params)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
image_processor_first.save_pretrained(tmpdirname)
|
|
image_processor_second = self.image_processing_class.from_pretrained(tmpdirname)
|
|
|
|
# check the 'format' key exists and that the dicts of the
|
|
# first and second processors are equal
|
|
self.assertIn("format", image_processor_first.to_dict().keys())
|
|
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
|
|
|
|
# perform encoding using both processors and compare
|
|
# the resulting BatchFeatures
|
|
first_encoding = image_processor_first(**params)
|
|
second_encoding = image_processor_second(**params)
|
|
_compare(first_encoding, second_encoding)
|