transformers/tests/sagemaker/scripts/tensorflow/run_tf.py

105 lines
4.0 KiB
Python

import argparse
import logging
import sys
import time
import tensorflow as tf
from datasets import load_dataset
from packaging.version import parse
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
try:
import tf_keras as keras
except (ModuleNotFoundError, ImportError):
import keras
if parse(keras.__version__).major > 2:
raise ValueError(
"Your currently installed version of Keras is Keras 3, but this is not yet supported in "
"Transformers. Please install the backwards-compatible tf-keras package with "
"`pip install tf-keras`."
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Hyperparameters sent by the client are passed as command-line arguments to the script.
parser.add_argument("--epochs", type=int, default=1)
parser.add_argument("--per_device_train_batch_size", type=int, default=16)
parser.add_argument("--per_device_eval_batch_size", type=int, default=8)
parser.add_argument("--model_name_or_path", type=str)
parser.add_argument("--learning_rate", type=str, default=5e-5)
parser.add_argument("--do_train", type=bool, default=True)
parser.add_argument("--do_eval", type=bool, default=True)
parser.add_argument("--output_dir", type=str)
args, _ = parser.parse_known_args()
# overwrite batch size until we have tf_glue.py
args.per_device_train_batch_size = 16
args.per_device_eval_batch_size = 16
# Set up logging
logger = logging.getLogger(__name__)
logging.basicConfig(
level=logging.getLevelName("INFO"),
handlers=[logging.StreamHandler(sys.stdout)],
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
# Load model and tokenizer
model = TFAutoModelForSequenceClassification.from_pretrained(args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
# Load dataset
train_dataset, test_dataset = load_dataset("imdb", split=["train", "test"])
train_dataset = train_dataset.shuffle().select(range(5000)) # smaller the size for train dataset to 5k
test_dataset = test_dataset.shuffle().select(range(500)) # smaller the size for test dataset to 500
# Preprocess train dataset
train_dataset = train_dataset.map(
lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True
)
train_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"])
train_features = {
x: train_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length])
for x in ["input_ids", "attention_mask"]
}
tf_train_dataset = tf.data.Dataset.from_tensor_slices((train_features, train_dataset["label"])).batch(
args.per_device_train_batch_size
)
# Preprocess test dataset
test_dataset = test_dataset.map(
lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True
)
test_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"])
test_features = {
x: test_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length])
for x in ["input_ids", "attention_mask"]
}
tf_test_dataset = tf.data.Dataset.from_tensor_slices((test_features, test_dataset["label"])).batch(
args.per_device_eval_batch_size
)
# fine optimizer and loss
optimizer = keras.optimizers.Adam(learning_rate=args.learning_rate)
loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metrics = [keras.metrics.SparseCategoricalAccuracy()]
model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
start_train_time = time.time()
train_results = model.fit(tf_train_dataset, epochs=args.epochs, batch_size=args.per_device_train_batch_size)
end_train_time = time.time() - start_train_time
logger.info("*** Train ***")
logger.info(f"train_runtime = {end_train_time}")
for key, value in train_results.history.items():
logger.info(f" {key} = {value}")