278 lines
10 KiB
Python
278 lines
10 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from transformers import is_vision_available
|
|
from transformers.pipelines import pipeline
|
|
from transformers.testing_utils import (
|
|
is_pipeline_test,
|
|
nested_simplify,
|
|
require_tf,
|
|
require_torch,
|
|
require_vision,
|
|
slow,
|
|
)
|
|
|
|
from .test_pipelines_common import ANY
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
else:
|
|
|
|
class Image:
|
|
@staticmethod
|
|
def open(*args, **kwargs):
|
|
pass
|
|
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
class ZeroShotImageClassificationPipelineTests(unittest.TestCase):
|
|
# Deactivating auto tests since we don't have a good MODEL_FOR_XX mapping,
|
|
# and only CLIP would be there for now.
|
|
# model_mapping = {CLIPConfig: CLIPModel}
|
|
|
|
# def get_test_pipeline(self, model, tokenizer, processor):
|
|
# if tokenizer is None:
|
|
# # Side effect of no Fast Tokenizer class for these model, so skipping
|
|
# # But the slow tokenizer test should still run as they're quite small
|
|
# self.skipTest("No tokenizer available")
|
|
# return
|
|
# # return None, None
|
|
|
|
# image_classifier = ZeroShotImageClassificationPipeline(
|
|
# model=model, tokenizer=tokenizer, feature_extractor=processor
|
|
# )
|
|
|
|
# # test with a raw waveform
|
|
# image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
# image2 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
# return image_classifier, [image, image2]
|
|
|
|
# def run_pipeline_test(self, pipe, examples):
|
|
# image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
# outputs = pipe(image, candidate_labels=["A", "B"])
|
|
# self.assertEqual(outputs, {"text": ANY(str)})
|
|
|
|
# # Batching
|
|
# outputs = pipe([image] * 3, batch_size=2, candidate_labels=["A", "B"])
|
|
|
|
@require_torch
|
|
def test_small_model_pt(self):
|
|
image_classifier = pipeline(
|
|
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification",
|
|
)
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
output = image_classifier(image, candidate_labels=["a", "b", "c"])
|
|
|
|
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
|
|
# python and torch versions.
|
|
self.assertIn(
|
|
nested_simplify(output),
|
|
[
|
|
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
|
|
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
|
|
[{"score": 0.333, "label": "b"}, {"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}],
|
|
],
|
|
)
|
|
|
|
output = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2)
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
# Pipeline outputs are supposed to be deterministic and
|
|
# So we could in theory have real values "A", "B", "C" instead
|
|
# of ANY(str).
|
|
# However it seems that in this particular case, the floating
|
|
# scores are so close, we enter floating error approximation
|
|
# and the order is not guaranteed anymore with batching.
|
|
[
|
|
[
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
],
|
|
[
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
],
|
|
[
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
],
|
|
[
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
],
|
|
[
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
],
|
|
],
|
|
)
|
|
|
|
@require_tf
|
|
def test_small_model_tf(self):
|
|
image_classifier = pipeline(
|
|
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", framework="tf"
|
|
)
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
output = image_classifier(image, candidate_labels=["a", "b", "c"])
|
|
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
|
|
)
|
|
|
|
output = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2)
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
# Pipeline outputs are supposed to be deterministic and
|
|
# So we could in theory have real values "A", "B", "C" instead
|
|
# of ANY(str).
|
|
# However it seems that in this particular case, the floating
|
|
# scores are so close, we enter floating error approximation
|
|
# and the order is not guaranteed anymore with batching.
|
|
[
|
|
[
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
],
|
|
[
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
],
|
|
[
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
],
|
|
[
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
],
|
|
[
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
{"score": 0.333, "label": ANY(str)},
|
|
],
|
|
],
|
|
)
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_large_model_pt(self):
|
|
image_classifier = pipeline(
|
|
task="zero-shot-image-classification",
|
|
model="openai/clip-vit-base-patch32",
|
|
)
|
|
# This is an image of 2 cats with remotes and no planes
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
output = image_classifier(image, candidate_labels=["cat", "plane", "remote"])
|
|
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
{"score": 0.511, "label": "remote"},
|
|
{"score": 0.485, "label": "cat"},
|
|
{"score": 0.004, "label": "plane"},
|
|
],
|
|
)
|
|
|
|
output = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2)
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
[
|
|
{"score": 0.511, "label": "remote"},
|
|
{"score": 0.485, "label": "cat"},
|
|
{"score": 0.004, "label": "plane"},
|
|
],
|
|
]
|
|
* 5,
|
|
)
|
|
|
|
@slow
|
|
@require_tf
|
|
def test_large_model_tf(self):
|
|
image_classifier = pipeline(
|
|
task="zero-shot-image-classification", model="openai/clip-vit-base-patch32", framework="tf"
|
|
)
|
|
# This is an image of 2 cats with remotes and no planes
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
output = image_classifier(image, candidate_labels=["cat", "plane", "remote"])
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
{"score": 0.511, "label": "remote"},
|
|
{"score": 0.485, "label": "cat"},
|
|
{"score": 0.004, "label": "plane"},
|
|
],
|
|
)
|
|
|
|
output = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2)
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
[
|
|
{"score": 0.511, "label": "remote"},
|
|
{"score": 0.485, "label": "cat"},
|
|
{"score": 0.004, "label": "plane"},
|
|
],
|
|
]
|
|
* 5,
|
|
)
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_siglip_model_pt(self):
|
|
image_classifier = pipeline(
|
|
task="zero-shot-image-classification",
|
|
model="google/siglip-base-patch16-224",
|
|
)
|
|
# This is an image of 2 cats with remotes and no planes
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
output = image_classifier(image, candidate_labels=["2 cats", "a plane", "a remote"])
|
|
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
{"score": 0.198, "label": "2 cats"},
|
|
{"score": 0.0, "label": "a remote"},
|
|
{"score": 0.0, "label": "a plane"},
|
|
],
|
|
)
|
|
|
|
output = image_classifier([image] * 5, candidate_labels=["2 cats", "a plane", "a remote"], batch_size=2)
|
|
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
[
|
|
{"score": 0.198, "label": "2 cats"},
|
|
{"score": 0.0, "label": "a remote"},
|
|
{"score": 0.0, "label": "a plane"},
|
|
]
|
|
]
|
|
* 5,
|
|
)
|