179 lines
6.6 KiB
Python
179 lines
6.6 KiB
Python
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
|
|
from transformers.pipelines import pipeline
|
|
from transformers.testing_utils import (
|
|
is_pipeline_test,
|
|
is_torch_available,
|
|
nested_simplify,
|
|
require_tf,
|
|
require_torch,
|
|
require_torch_accelerator,
|
|
require_vision,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from .test_pipelines_common import ANY
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
else:
|
|
|
|
class Image:
|
|
@staticmethod
|
|
def open(*args, **kwargs):
|
|
pass
|
|
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
@require_vision
|
|
class VisualQuestionAnsweringPipelineTests(unittest.TestCase):
|
|
model_mapping = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
|
|
|
|
def get_test_pipeline(self, model, tokenizer, processor):
|
|
vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
|
|
examples = [
|
|
{
|
|
"image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
|
|
"question": "How many cats are there?",
|
|
},
|
|
{
|
|
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
|
|
"question": "How many cats are there?",
|
|
},
|
|
]
|
|
return vqa_pipeline, examples
|
|
|
|
def run_pipeline_test(self, vqa_pipeline, examples):
|
|
outputs = vqa_pipeline(examples, top_k=1)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
[{"score": ANY(float), "answer": ANY(str)}],
|
|
[{"score": ANY(float), "answer": ANY(str)}],
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_small_model_pt(self):
|
|
vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
|
|
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
|
|
question = "How many cats are there?"
|
|
|
|
outputs = vqa_pipeline(image=image, question="How many cats are there?", top_k=2)
|
|
self.assertEqual(
|
|
outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}]
|
|
)
|
|
|
|
outputs = vqa_pipeline({"image": image, "question": question}, top_k=2)
|
|
self.assertEqual(
|
|
outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}]
|
|
)
|
|
|
|
@require_torch
|
|
@require_torch_accelerator
|
|
def test_small_model_pt_blip2(self):
|
|
vqa_pipeline = pipeline(
|
|
"visual-question-answering", model="hf-internal-testing/tiny-random-Blip2ForConditionalGeneration"
|
|
)
|
|
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
|
|
question = "How many cats are there?"
|
|
|
|
outputs = vqa_pipeline(image=image, question=question)
|
|
self.assertEqual(outputs, [{"answer": ANY(str)}])
|
|
|
|
outputs = vqa_pipeline({"image": image, "question": question})
|
|
self.assertEqual(outputs, [{"answer": ANY(str)}])
|
|
|
|
outputs = vqa_pipeline([{"image": image, "question": question}, {"image": image, "question": question}])
|
|
self.assertEqual(outputs, [[{"answer": ANY(str)}]] * 2)
|
|
|
|
vqa_pipeline = pipeline(
|
|
"visual-question-answering",
|
|
model="hf-internal-testing/tiny-random-Blip2ForConditionalGeneration",
|
|
model_kwargs={"torch_dtype": torch.float16},
|
|
device=torch_device,
|
|
)
|
|
self.assertEqual(vqa_pipeline.model.device, torch.device("{}:0".format(torch_device)))
|
|
self.assertEqual(vqa_pipeline.model.language_model.dtype, torch.float16)
|
|
self.assertEqual(vqa_pipeline.model.vision_model.dtype, torch.float16)
|
|
|
|
outputs = vqa_pipeline(image=image, question=question)
|
|
self.assertEqual(outputs, [{"answer": ANY(str)}])
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_large_model_pt(self):
|
|
vqa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
|
|
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
|
|
question = "How many cats are there?"
|
|
|
|
outputs = vqa_pipeline(image=image, question=question, top_k=2)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
|
|
)
|
|
|
|
outputs = vqa_pipeline({"image": image, "question": question}, top_k=2)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
|
|
)
|
|
|
|
outputs = vqa_pipeline(
|
|
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2,
|
|
)
|
|
|
|
@slow
|
|
@require_torch
|
|
@require_torch_accelerator
|
|
def test_large_model_pt_blip2(self):
|
|
vqa_pipeline = pipeline(
|
|
"visual-question-answering",
|
|
model="Salesforce/blip2-opt-2.7b",
|
|
model_kwargs={"torch_dtype": torch.float16},
|
|
device=torch_device,
|
|
)
|
|
self.assertEqual(vqa_pipeline.model.device, torch.device("{}:0".format(torch_device)))
|
|
self.assertEqual(vqa_pipeline.model.language_model.dtype, torch.float16)
|
|
|
|
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
|
|
question = "Question: how many cats are there? Answer:"
|
|
|
|
outputs = vqa_pipeline(image=image, question=question)
|
|
self.assertEqual(outputs, [{"answer": "two"}])
|
|
|
|
outputs = vqa_pipeline({"image": image, "question": question})
|
|
self.assertEqual(outputs, [{"answer": "two"}])
|
|
|
|
outputs = vqa_pipeline([{"image": image, "question": question}, {"image": image, "question": question}])
|
|
self.assertEqual(outputs, [[{"answer": "two"}]] * 2)
|
|
|
|
@require_tf
|
|
@unittest.skip("Visual question answering not implemented in TF")
|
|
def test_small_model_tf(self):
|
|
pass
|