transformers/tests/models/pop2piano/test_processor_pop2piano.py

265 lines
9.3 KiB
Python

# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from datasets import load_dataset
from transformers.testing_utils import (
require_essentia,
require_librosa,
require_pretty_midi,
require_scipy,
require_torch,
)
from transformers.tokenization_utils import BatchEncoding
from transformers.utils.import_utils import (
is_essentia_available,
is_librosa_available,
is_pretty_midi_available,
is_scipy_available,
is_torch_available,
)
requirements_available = (
is_torch_available()
and is_essentia_available()
and is_scipy_available()
and is_librosa_available()
and is_pretty_midi_available()
)
if requirements_available:
import pretty_midi
from transformers import (
Pop2PianoFeatureExtractor,
Pop2PianoForConditionalGeneration,
Pop2PianoProcessor,
Pop2PianoTokenizer,
)
@require_scipy
@require_torch
@require_librosa
@require_essentia
@require_pretty_midi
class Pop2PianoProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
feature_extractor = Pop2PianoFeatureExtractor.from_pretrained("sweetcocoa/pop2piano")
tokenizer = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano")
processor = Pop2PianoProcessor(feature_extractor, tokenizer)
processor.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs):
return Pop2PianoTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_feature_extractor(self, **kwargs):
return Pop2PianoFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_save_load_pretrained_additional_features(self):
processor = Pop2PianoProcessor(
tokenizer=self.get_tokenizer(),
feature_extractor=self.get_feature_extractor(),
)
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(
unk_token="-1",
eos_token="1",
pad_token="0",
bos_token="2",
)
feature_extractor_add_kwargs = self.get_feature_extractor()
processor = Pop2PianoProcessor.from_pretrained(
self.tmpdirname,
unk_token="-1",
eos_token="1",
pad_token="0",
bos_token="2",
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, Pop2PianoTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, Pop2PianoFeatureExtractor)
def get_inputs(self):
"""get inputs for both feature extractor and tokenizer"""
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
speech_samples = ds.sort("id").select([0])["audio"]
input_speech = [x["array"] for x in speech_samples][0]
sampling_rate = [x["sampling_rate"] for x in speech_samples][0]
feature_extractor_outputs = self.get_feature_extractor()(
audio=input_speech, sampling_rate=sampling_rate, return_tensors="pt"
)
model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
token_ids = model.generate(input_features=feature_extractor_outputs["input_features"], composer="composer1")
dummy_notes = [
[
pretty_midi.Note(start=0.441179, end=2.159456, pitch=70, velocity=77),
pretty_midi.Note(start=0.673379, end=0.905578, pitch=73, velocity=77),
pretty_midi.Note(start=0.905578, end=2.159456, pitch=73, velocity=77),
pretty_midi.Note(start=1.114558, end=2.159456, pitch=78, velocity=77),
pretty_midi.Note(start=1.323537, end=1.532517, pitch=80, velocity=77),
],
[
pretty_midi.Note(start=0.441179, end=2.159456, pitch=70, velocity=77),
],
]
return input_speech, sampling_rate, token_ids, dummy_notes
def test_feature_extractor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Pop2PianoProcessor(
tokenizer=tokenizer,
feature_extractor=feature_extractor,
)
input_speech, sampling_rate, _, _ = self.get_inputs()
feature_extractor_outputs = feature_extractor(
audio=input_speech, sampling_rate=sampling_rate, return_tensors="np"
)
processor_outputs = processor(audio=input_speech, sampling_rate=sampling_rate, return_tensors="np")
for key in feature_extractor_outputs.keys():
self.assertTrue(np.allclose(feature_extractor_outputs[key], processor_outputs[key], atol=1e-4))
def test_processor_batch_decode(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Pop2PianoProcessor(
tokenizer=tokenizer,
feature_extractor=feature_extractor,
)
audio, sampling_rate, token_ids, _ = self.get_inputs()
feature_extractor_output = feature_extractor(audio=audio, sampling_rate=sampling_rate, return_tensors="pt")
encoded_processor = processor.batch_decode(
token_ids=token_ids,
feature_extractor_output=feature_extractor_output,
return_midi=True,
)
encoded_tokenizer = tokenizer.batch_decode(
token_ids=token_ids,
feature_extractor_output=feature_extractor_output,
return_midi=True,
)
# check start timings
encoded_processor_start_timings = [token.start for token in encoded_processor["notes"]]
encoded_tokenizer_start_timings = [token.start for token in encoded_tokenizer["notes"]]
self.assertListEqual(encoded_processor_start_timings, encoded_tokenizer_start_timings)
# check end timings
encoded_processor_end_timings = [token.end for token in encoded_processor["notes"]]
encoded_tokenizer_end_timings = [token.end for token in encoded_tokenizer["notes"]]
self.assertListEqual(encoded_processor_end_timings, encoded_tokenizer_end_timings)
# check pitch
encoded_processor_pitch = [token.pitch for token in encoded_processor["notes"]]
encoded_tokenizer_pitch = [token.pitch for token in encoded_tokenizer["notes"]]
self.assertListEqual(encoded_processor_pitch, encoded_tokenizer_pitch)
# check velocity
encoded_processor_velocity = [token.velocity for token in encoded_processor["notes"]]
encoded_tokenizer_velocity = [token.velocity for token in encoded_tokenizer["notes"]]
self.assertListEqual(encoded_processor_velocity, encoded_tokenizer_velocity)
def test_tokenizer_call(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Pop2PianoProcessor(
tokenizer=tokenizer,
feature_extractor=feature_extractor,
)
_, _, _, notes = self.get_inputs()
encoded_processor = processor(
notes=notes,
)
self.assertTrue(isinstance(encoded_processor, BatchEncoding))
def test_processor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Pop2PianoProcessor(
tokenizer=tokenizer,
feature_extractor=feature_extractor,
)
audio, sampling_rate, _, notes = self.get_inputs()
inputs = processor(
audio=audio,
sampling_rate=sampling_rate,
notes=notes,
)
self.assertListEqual(
list(inputs.keys()),
["input_features", "beatsteps", "extrapolated_beatstep", "token_ids"],
)
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_model_input_names(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Pop2PianoProcessor(
tokenizer=tokenizer,
feature_extractor=feature_extractor,
)
audio, sampling_rate, _, notes = self.get_inputs()
feature_extractor(audio, sampling_rate, return_tensors="pt")
inputs = processor(
audio=audio,
sampling_rate=sampling_rate,
notes=notes,
)
self.assertListEqual(
list(inputs.keys()),
["input_features", "beatsteps", "extrapolated_beatstep", "token_ids"],
)