385 lines
13 KiB
Python
385 lines
13 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The Hugging Face Team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers import MarkupLMConfig, is_torch_available
|
|
from transformers.testing_utils import require_torch, slow, torch_device
|
|
from transformers.utils import cached_property
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
MarkupLMForQuestionAnswering,
|
|
MarkupLMForSequenceClassification,
|
|
MarkupLMForTokenClassification,
|
|
MarkupLMModel,
|
|
)
|
|
|
|
# TODO check dependencies
|
|
from transformers import MarkupLMFeatureExtractor, MarkupLMProcessor, MarkupLMTokenizer
|
|
|
|
|
|
class MarkupLMModelTester:
|
|
"""You can also import this e.g from .test_modeling_markuplm import MarkupLMModelTester"""
|
|
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
scope=None,
|
|
max_xpath_tag_unit_embeddings=20,
|
|
max_xpath_subs_unit_embeddings=30,
|
|
tag_pad_id=2,
|
|
subs_pad_id=2,
|
|
max_depth=10,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.scope = scope
|
|
self.max_xpath_tag_unit_embeddings = max_xpath_tag_unit_embeddings
|
|
self.max_xpath_subs_unit_embeddings = max_xpath_subs_unit_embeddings
|
|
self.tag_pad_id = tag_pad_id
|
|
self.subs_pad_id = subs_pad_id
|
|
self.max_depth = max_depth
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
xpath_tags_seq = ids_tensor(
|
|
[self.batch_size, self.seq_length, self.max_depth], self.max_xpath_tag_unit_embeddings
|
|
)
|
|
|
|
xpath_subs_seq = ids_tensor(
|
|
[self.batch_size, self.seq_length, self.max_depth], self.max_xpath_subs_unit_embeddings
|
|
)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
|
|
config = self.get_config()
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
xpath_tags_seq,
|
|
xpath_subs_seq,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
)
|
|
|
|
def get_config(self):
|
|
return MarkupLMConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
initializer_range=self.initializer_range,
|
|
max_xpath_tag_unit_embeddings=self.max_xpath_tag_unit_embeddings,
|
|
max_xpath_subs_unit_embeddings=self.max_xpath_subs_unit_embeddings,
|
|
tag_pad_id=self.tag_pad_id,
|
|
subs_pad_id=self.subs_pad_id,
|
|
max_depth=self.max_depth,
|
|
)
|
|
|
|
def create_and_check_model(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
xpath_tags_seq,
|
|
xpath_subs_seq,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
):
|
|
model = MarkupLMModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
print("Configs:", model.config.tag_pad_id, model.config.subs_pad_id)
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
|
result = model(input_ids, token_type_ids=token_type_ids)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
def create_and_check_for_sequence_classification(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
xpath_tags_seq,
|
|
xpath_subs_seq,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = MarkupLMForSequenceClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids,
|
|
xpath_tags_seq=xpath_tags_seq,
|
|
xpath_subs_seq=xpath_subs_seq,
|
|
attention_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
labels=sequence_labels,
|
|
)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
|
|
|
def create_and_check_for_token_classification(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
xpath_tags_seq,
|
|
xpath_subs_seq,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = MarkupLMForTokenClassification(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids,
|
|
xpath_tags_seq=xpath_tags_seq,
|
|
xpath_subs_seq=xpath_subs_seq,
|
|
attention_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
labels=token_labels,
|
|
)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
|
|
|
def create_and_check_for_question_answering(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
xpath_tags_seq,
|
|
xpath_subs_seq,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
):
|
|
model = MarkupLMForQuestionAnswering(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids,
|
|
xpath_tags_seq=xpath_tags_seq,
|
|
xpath_subs_seq=xpath_subs_seq,
|
|
attention_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
start_positions=sequence_labels,
|
|
end_positions=sequence_labels,
|
|
)
|
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
xpath_tags_seq,
|
|
xpath_subs_seq,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {
|
|
"input_ids": input_ids,
|
|
"xpath_tags_seq": xpath_tags_seq,
|
|
"xpath_subs_seq": xpath_subs_seq,
|
|
"token_type_ids": token_type_ids,
|
|
"attention_mask": input_mask,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class MarkupLMModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
MarkupLMModel,
|
|
MarkupLMForSequenceClassification,
|
|
MarkupLMForTokenClassification,
|
|
MarkupLMForQuestionAnswering,
|
|
)
|
|
if is_torch_available()
|
|
else None
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": MarkupLMModel,
|
|
"question-answering": MarkupLMForQuestionAnswering,
|
|
"text-classification": MarkupLMForSequenceClassification,
|
|
"token-classification": MarkupLMForTokenClassification,
|
|
"zero-shot": MarkupLMForSequenceClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
|
|
# TODO: Fix the failed tests
|
|
def is_pipeline_test_to_skip(
|
|
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
|
|
):
|
|
# ValueError: Nodes must be of type `List[str]` (single pretokenized example), or `List[List[str]]`
|
|
# (batch of pretokenized examples).
|
|
return True
|
|
|
|
def setUp(self):
|
|
self.model_tester = MarkupLMModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=MarkupLMConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_for_sequence_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
|
|
|
|
def test_for_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
|
|
|
|
def test_for_question_answering(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
|
|
|
|
|
|
def prepare_html_string():
|
|
html_string = """
|
|
<!DOCTYPE html>
|
|
<html>
|
|
<head>
|
|
<title>Page Title</title>
|
|
</head>
|
|
<body>
|
|
|
|
<h1>This is a Heading</h1>
|
|
<p>This is a paragraph.</p>
|
|
|
|
</body>
|
|
</html>
|
|
"""
|
|
|
|
return html_string
|
|
|
|
|
|
@require_torch
|
|
class MarkupLMModelIntegrationTest(unittest.TestCase):
|
|
@cached_property
|
|
def default_processor(self):
|
|
# TODO use from_pretrained here
|
|
feature_extractor = MarkupLMFeatureExtractor()
|
|
tokenizer = MarkupLMTokenizer.from_pretrained("microsoft/markuplm-base")
|
|
|
|
return MarkupLMProcessor(feature_extractor, tokenizer)
|
|
|
|
@slow
|
|
def test_forward_pass_no_head(self):
|
|
model = MarkupLMModel.from_pretrained("microsoft/markuplm-base").to(torch_device)
|
|
|
|
processor = self.default_processor
|
|
|
|
inputs = processor(prepare_html_string(), return_tensors="pt")
|
|
inputs = inputs.to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
# verify the last hidden states
|
|
expected_shape = torch.Size([1, 14, 768])
|
|
self.assertEqual(outputs.last_hidden_state.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[[0.0675, -0.0052, 0.5001], [-0.2281, 0.0802, 0.2192], [-0.0583, -0.3311, 0.1185]]
|
|
).to(torch_device)
|
|
|
|
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
|