605 lines
25 KiB
Python
605 lines
25 KiB
Python
# coding=utf-8
|
||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""Testing suite for the PyTorch GPT Neo model."""
|
||
|
||
import unittest
|
||
|
||
from transformers import GPTNeoConfig, is_torch_available
|
||
from transformers.testing_utils import require_torch, slow, torch_device
|
||
from transformers.utils import cached_property
|
||
|
||
from ...generation.test_utils import GenerationTesterMixin
|
||
from ...test_configuration_common import ConfigTester
|
||
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
|
||
from ...test_pipeline_mixin import PipelineTesterMixin
|
||
|
||
|
||
if is_torch_available():
|
||
import torch
|
||
|
||
from transformers import (
|
||
GPT2Tokenizer,
|
||
GPTNeoForCausalLM,
|
||
GPTNeoForQuestionAnswering,
|
||
GPTNeoForSequenceClassification,
|
||
GPTNeoForTokenClassification,
|
||
GPTNeoModel,
|
||
)
|
||
|
||
|
||
class GPTNeoModelTester:
|
||
def __init__(
|
||
self,
|
||
parent,
|
||
batch_size=14,
|
||
seq_length=7,
|
||
is_training=True,
|
||
use_token_type_ids=True,
|
||
use_input_mask=True,
|
||
use_labels=True,
|
||
use_mc_token_ids=True,
|
||
vocab_size=99,
|
||
hidden_size=32,
|
||
num_hidden_layers=2,
|
||
attention_types=[[["global", "local"], 1]],
|
||
num_attention_heads=4,
|
||
intermediate_size=37,
|
||
hidden_act="gelu",
|
||
hidden_dropout_prob=0.1,
|
||
attention_probs_dropout_prob=0.1,
|
||
max_position_embeddings=512,
|
||
window_size=7,
|
||
type_vocab_size=16,
|
||
type_sequence_label_size=2,
|
||
initializer_range=0.02,
|
||
num_labels=3,
|
||
num_choices=4,
|
||
):
|
||
self.parent = parent
|
||
self.batch_size = batch_size
|
||
self.seq_length = seq_length
|
||
self.is_training = is_training
|
||
self.use_token_type_ids = use_token_type_ids
|
||
self.use_input_mask = use_input_mask
|
||
self.use_labels = use_labels
|
||
self.use_mc_token_ids = use_mc_token_ids
|
||
self.vocab_size = vocab_size
|
||
self.hidden_size = hidden_size
|
||
self.num_hidden_layers = num_hidden_layers
|
||
self.num_attention_heads = num_attention_heads
|
||
self.intermediate_size = intermediate_size
|
||
self.hidden_act = hidden_act
|
||
self.hidden_dropout_prob = hidden_dropout_prob
|
||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
self.max_position_embeddings = max_position_embeddings
|
||
self.window_size = window_size
|
||
self.type_vocab_size = type_vocab_size
|
||
self.type_sequence_label_size = type_sequence_label_size
|
||
self.initializer_range = initializer_range
|
||
self.num_labels = num_labels
|
||
self.num_choices = num_choices
|
||
self.bos_token_id = vocab_size - 1
|
||
self.eos_token_id = vocab_size - 1
|
||
self.pad_token_id = vocab_size - 1
|
||
self.attention_types = attention_types
|
||
|
||
def get_large_model_config(self):
|
||
return GPTNeoConfig.from_pretrained("gpt-neo-125M")
|
||
|
||
def prepare_config_and_inputs(self):
|
||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||
|
||
input_mask = None
|
||
if self.use_input_mask:
|
||
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
||
|
||
token_type_ids = None
|
||
if self.use_token_type_ids:
|
||
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
||
|
||
mc_token_ids = None
|
||
if self.use_mc_token_ids:
|
||
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
|
||
|
||
sequence_labels = None
|
||
token_labels = None
|
||
choice_labels = None
|
||
if self.use_labels:
|
||
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
||
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
||
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
||
|
||
config = self.get_config()
|
||
|
||
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
|
||
|
||
return (
|
||
config,
|
||
input_ids,
|
||
input_mask,
|
||
head_mask,
|
||
token_type_ids,
|
||
mc_token_ids,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
)
|
||
|
||
def get_config(self):
|
||
return GPTNeoConfig(
|
||
vocab_size=self.vocab_size,
|
||
hidden_size=self.hidden_size,
|
||
num_layers=self.num_hidden_layers,
|
||
num_heads=self.num_attention_heads,
|
||
max_position_embeddings=self.max_position_embeddings,
|
||
use_cache=True,
|
||
bos_token_id=self.bos_token_id,
|
||
eos_token_id=self.eos_token_id,
|
||
pad_token_id=self.pad_token_id,
|
||
window_size=self.window_size,
|
||
attention_types=self.attention_types,
|
||
)
|
||
|
||
def get_pipeline_config(self):
|
||
config = self.get_config()
|
||
config.vocab_size = 300
|
||
return config
|
||
|
||
def prepare_config_and_inputs_for_decoder(self):
|
||
(
|
||
config,
|
||
input_ids,
|
||
input_mask,
|
||
head_mask,
|
||
token_type_ids,
|
||
mc_token_ids,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
) = self.prepare_config_and_inputs()
|
||
|
||
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
|
||
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
||
|
||
return (
|
||
config,
|
||
input_ids,
|
||
input_mask,
|
||
head_mask,
|
||
token_type_ids,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
encoder_hidden_states,
|
||
encoder_attention_mask,
|
||
)
|
||
|
||
def create_and_check_gpt_neo_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
||
model = GPTNeoModel(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
|
||
result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
|
||
result = model(input_ids, token_type_ids=token_type_ids)
|
||
result = model(input_ids)
|
||
|
||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||
# past_key_values is not implemented
|
||
# self.parent.assertEqual(len(result.past_key_values), config.n_layer)
|
||
|
||
def create_and_check_gpt_neo_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
||
model = GPTNeoModel(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
|
||
# first forward pass
|
||
outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
|
||
outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
|
||
outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)
|
||
|
||
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
|
||
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
|
||
|
||
output, past = outputs.to_tuple()
|
||
|
||
# create hypothetical next token and extent to next_input_ids
|
||
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
|
||
next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)
|
||
|
||
# append to next input_ids and token_type_ids
|
||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||
next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)
|
||
|
||
output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
|
||
output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[
|
||
"last_hidden_state"
|
||
]
|
||
|
||
# select random slice
|
||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
|
||
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
|
||
|
||
# test that outputs are equal for slice
|
||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||
|
||
def create_and_check_gpt_neo_model_attention_mask_past(
|
||
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
|
||
):
|
||
model = GPTNeoModel(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
|
||
# create attention mask
|
||
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
|
||
half_seq_length = self.seq_length // 2
|
||
attn_mask[:, half_seq_length:] = 0
|
||
|
||
# first forward pass
|
||
output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
|
||
|
||
# create hypothetical next token and extent to next_input_ids
|
||
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
|
||
|
||
# change a random masked slice from input_ids
|
||
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
|
||
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
|
||
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
|
||
|
||
# append to next input_ids and attn_mask
|
||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||
attn_mask = torch.cat(
|
||
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
|
||
dim=1,
|
||
)
|
||
|
||
# get two different outputs
|
||
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
|
||
output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"]
|
||
|
||
# select random slice
|
||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
|
||
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
|
||
|
||
# test that outputs are equal for slice
|
||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||
|
||
def create_and_check_gpt_neo_model_past_large_inputs(
|
||
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
|
||
):
|
||
model = GPTNeoModel(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
|
||
# first forward pass
|
||
outputs = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask, use_cache=True)
|
||
|
||
output, past = outputs.to_tuple()
|
||
|
||
# create hypothetical next token and extent to next_input_ids
|
||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||
next_token_types = ids_tensor([self.batch_size, 3], self.type_vocab_size)
|
||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||
|
||
# append to next input_ids and token_type_ids
|
||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||
next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)
|
||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||
|
||
output_from_no_past = model(
|
||
next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
|
||
)["last_hidden_state"]
|
||
output_from_past = model(
|
||
next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past
|
||
)["last_hidden_state"]
|
||
self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])
|
||
|
||
# select random slice
|
||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||
|
||
# test that outputs are equal for slice
|
||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||
|
||
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
||
model = GPTNeoForCausalLM(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
|
||
result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
|
||
self.parent.assertEqual(result.loss.shape, ())
|
||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||
|
||
def create_and_check_gpt_neo_for_question_answering(
|
||
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
|
||
):
|
||
config.num_labels = self.num_labels
|
||
model = GPTNeoForQuestionAnswering(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
||
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
||
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
||
|
||
def create_and_check_gpt_neo_for_sequence_classification(
|
||
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
|
||
):
|
||
config.num_labels = self.num_labels
|
||
model = GPTNeoForSequenceClassification(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
|
||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
||
|
||
def create_and_check_gpt_neo_for_token_classification(
|
||
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
|
||
):
|
||
config.num_labels = self.num_labels
|
||
model = GPTNeoForTokenClassification(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
||
|
||
def create_and_check_forward_and_backwards(
|
||
self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False
|
||
):
|
||
model = GPTNeoForCausalLM(config)
|
||
if gradient_checkpointing:
|
||
model.gradient_checkpointing_enable()
|
||
model.to(torch_device)
|
||
|
||
result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
|
||
self.parent.assertEqual(result.loss.shape, ())
|
||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||
result.loss.backward()
|
||
|
||
def prepare_config_and_inputs_for_common(self):
|
||
config_and_inputs = self.prepare_config_and_inputs()
|
||
|
||
(
|
||
config,
|
||
input_ids,
|
||
input_mask,
|
||
head_mask,
|
||
token_type_ids,
|
||
mc_token_ids,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
) = config_and_inputs
|
||
|
||
inputs_dict = {
|
||
"input_ids": input_ids,
|
||
"token_type_ids": token_type_ids,
|
||
"head_mask": head_mask,
|
||
}
|
||
|
||
return config, inputs_dict
|
||
|
||
|
||
@require_torch
|
||
class GPTNeoModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||
all_model_classes = (
|
||
(
|
||
GPTNeoModel,
|
||
GPTNeoForCausalLM,
|
||
GPTNeoForQuestionAnswering,
|
||
GPTNeoForSequenceClassification,
|
||
GPTNeoForTokenClassification,
|
||
)
|
||
if is_torch_available()
|
||
else ()
|
||
)
|
||
all_generative_model_classes = (GPTNeoForCausalLM,) if is_torch_available() else ()
|
||
pipeline_model_mapping = (
|
||
{
|
||
"feature-extraction": GPTNeoModel,
|
||
"question-answering": GPTNeoForQuestionAnswering,
|
||
"text-classification": GPTNeoForSequenceClassification,
|
||
"text-generation": GPTNeoForCausalLM,
|
||
"token-classification": GPTNeoForTokenClassification,
|
||
"zero-shot": GPTNeoForSequenceClassification,
|
||
}
|
||
if is_torch_available()
|
||
else {}
|
||
)
|
||
fx_compatible = True
|
||
test_missing_keys = False
|
||
test_pruning = False
|
||
test_model_parallel = False
|
||
|
||
# special case for DoubleHeads model
|
||
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
||
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
|
||
return inputs_dict
|
||
|
||
def setUp(self):
|
||
self.model_tester = GPTNeoModelTester(self)
|
||
self.config_tester = ConfigTester(self, config_class=GPTNeoConfig, n_embd=37)
|
||
|
||
def test_config(self):
|
||
self.config_tester.run_common_tests()
|
||
|
||
def test_gpt_neo_model(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_gpt_neo_model(*config_and_inputs)
|
||
|
||
def test_gpt_neo_model_past(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_gpt_neo_model_past(*config_and_inputs)
|
||
|
||
def test_gpt_neo_model_att_mask_past(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_gpt_neo_model_attention_mask_past(*config_and_inputs)
|
||
|
||
def test_gpt_neo_model_past_large_inputs(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_gpt_neo_model_past_large_inputs(*config_and_inputs)
|
||
|
||
def test_gpt_neo_lm_head_model(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_lm_head_model(*config_and_inputs)
|
||
|
||
def test_gpt_neo_question_answering_model(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_gpt_neo_for_question_answering(*config_and_inputs)
|
||
|
||
def test_gpt_neo_sequence_classification_model(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_gpt_neo_for_sequence_classification(*config_and_inputs)
|
||
|
||
def test_gpt_neo_token_classification_model(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_gpt_neo_for_token_classification(*config_and_inputs)
|
||
|
||
def test_gpt_neo_gradient_checkpointing(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)
|
||
|
||
def _get_hidden_states(self):
|
||
return torch.tensor(
|
||
[
|
||
[
|
||
[0.4983, -0.7584, -1.6944, 0.5440],
|
||
[2.6918, 0.4206, 0.4176, 0.2055],
|
||
[-0.0071, -0.0405, -1.4920, -0.3630],
|
||
[1.0492, 0.1599, -1.7648, 0.2419],
|
||
[-1.8348, 2.0514, -0.1946, 0.3203],
|
||
[0.7672, -1.1600, -1.7118, -0.9056],
|
||
[0.2986, 0.5372, 0.7729, -0.1927],
|
||
[0.0285, 0.2629, -1.1156, -1.1992],
|
||
]
|
||
],
|
||
dtype=torch.float32,
|
||
device=torch_device,
|
||
)
|
||
|
||
def test_local_attn_probs(self):
|
||
model = GPTNeoModel.from_pretrained("valhalla/gpt-neo-random-tiny").eval()
|
||
layer = model.h[1].attn.attention.to(torch_device)
|
||
hidden_states = self._get_hidden_states()
|
||
hidden_states = torch.cat([hidden_states, hidden_states - 0.5], dim=2)
|
||
|
||
batch_size, seq_length, _ = hidden_states.shape
|
||
mask_tokens = 2
|
||
attention_mask = torch.ones(batch_size, seq_length, device=torch_device, dtype=torch.long)
|
||
attention_mask[:, -mask_tokens:] = 0 # dont attend last mask_tokens
|
||
|
||
attention_mask = attention_mask.view(batch_size, -1)
|
||
attention_mask = attention_mask[:, None, None, :]
|
||
attention_mask = (1.0 - attention_mask) * -10000.0
|
||
|
||
attn_probs = layer(hidden_states, attention_mask=attention_mask, output_attentions=True)[-1]
|
||
|
||
# the last 2 tokens are masked, and should have 0 attn_probs
|
||
self.assertTrue(torch.all(attn_probs[:, :, -mask_tokens:, -mask_tokens:] == 0))
|
||
|
||
# in loacal attention each token can only attend to the previous window_size tokens (inlcuding itself)
|
||
# here window_size is 4, so a token at index 5 can only attend to indcies [2, 3, 4, 5]
|
||
# and the attn_probs should be 0 for token [0, 1]
|
||
self.assertTrue(torch.all(attn_probs[:, :, 5, 2:6] != 0))
|
||
self.assertTrue(torch.all(attn_probs[:, :, 5, :2] == 0))
|
||
|
||
|
||
@require_torch
|
||
class GPTNeoModelLanguageGenerationTest(unittest.TestCase):
|
||
@cached_property
|
||
def model(self):
|
||
return GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B").to(torch_device)
|
||
|
||
@cached_property
|
||
def tokenizer(self):
|
||
return GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
||
|
||
@slow
|
||
def test_lm_generate_gpt_neo(self):
|
||
for checkpointing in [True, False]:
|
||
model = self.model
|
||
if checkpointing:
|
||
model.gradient_checkpointing_enable()
|
||
else:
|
||
model.gradient_checkpointing_disable()
|
||
input_ids = torch.tensor([[464, 3290]], dtype=torch.long, device=torch_device) # The dog
|
||
# The dog-eared copy of the book, which is a collection of essays by the late author,
|
||
expected_output_ids = [464, 3290, 12, 3380, 4866, 286, 262, 1492, 11, 543, 318, 257, 4947, 286, 27126, 416, 262, 2739, 1772, 11] # fmt: skip
|
||
output_ids = model.generate(input_ids, do_sample=False)
|
||
self.assertListEqual(output_ids[0].tolist(), expected_output_ids)
|
||
|
||
@slow
|
||
def test_gpt_neo_sample(self):
|
||
model = self.model
|
||
tokenizer = self.tokenizer
|
||
|
||
torch.manual_seed(0)
|
||
tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
|
||
input_ids = tokenized.input_ids.to(torch_device)
|
||
output_ids = model.generate(input_ids, do_sample=True)
|
||
output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
||
|
||
EXPECTED_OUTPUT_STR = "Today is a nice day and if you don’t get the memo here is what you can"
|
||
self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
|
||
|
||
@slow
|
||
def test_batch_generation(self):
|
||
model = self.model
|
||
tokenizer = self.tokenizer
|
||
|
||
tokenizer.padding_side = "left"
|
||
|
||
# Define PAD Token = EOS Token = 50256
|
||
tokenizer.pad_token = tokenizer.eos_token
|
||
model.config.pad_token_id = model.config.eos_token_id
|
||
|
||
# use different length sentences to test batching
|
||
sentences = [
|
||
"Hello, my dog is a little",
|
||
"Today, I am",
|
||
]
|
||
|
||
inputs = tokenizer(sentences, return_tensors="pt", padding=True)
|
||
input_ids = inputs["input_ids"].to(torch_device)
|
||
|
||
outputs = model.generate(
|
||
input_ids=input_ids,
|
||
attention_mask=inputs["attention_mask"].to(torch_device),
|
||
)
|
||
|
||
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
|
||
output_non_padded = model.generate(input_ids=inputs_non_padded)
|
||
|
||
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
|
||
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
|
||
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)
|
||
|
||
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
|
||
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)
|
||
|
||
expected_output_sentence = [
|
||
"Hello, my dog is a little bit of a kitty. She is a very sweet and loving",
|
||
"Today, I am going to talk about the best way to get a job in the",
|
||
]
|
||
self.assertListEqual(expected_output_sentence, batch_out_sentence)
|
||
self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])
|
||
|
||
@slow
|
||
def test_model_from_pretrained(self):
|
||
model_name = "EleutherAI/gpt-neo-1.3B"
|
||
model = GPTNeoModel.from_pretrained(model_name)
|
||
self.assertIsNotNone(model)
|