transformers/docs/source/en/model_doc/speecht5.md

86 lines
3.4 KiB
Markdown

<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# SpeechT5
## Overview
The SpeechT5 model was proposed in [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
The abstract from the paper is the following:
*Motivated by the success of T5 (Text-To-Text Transfer Transformer) in pre-trained natural language processing models, we propose a unified-modal SpeechT5 framework that explores the encoder-decoder pre-training for self-supervised speech/text representation learning. The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets. After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder. Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text. To align the textual and speech information into this unified semantic space, we propose a cross-modal vector quantization approach that randomly mixes up speech/text states with latent units as the interface between encoder and decoder. Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification.*
This model was contributed by [Matthijs](https://huggingface.co/Matthijs). The original code can be found [here](https://github.com/microsoft/SpeechT5).
## SpeechT5Config
[[autodoc]] SpeechT5Config
## SpeechT5HifiGanConfig
[[autodoc]] SpeechT5HifiGanConfig
## SpeechT5Tokenizer
[[autodoc]] SpeechT5Tokenizer
- __call__
- save_vocabulary
- decode
- batch_decode
## SpeechT5FeatureExtractor
[[autodoc]] SpeechT5FeatureExtractor
- __call__
## SpeechT5Processor
[[autodoc]] SpeechT5Processor
- __call__
- pad
- from_pretrained
- save_pretrained
- batch_decode
- decode
## SpeechT5Model
[[autodoc]] SpeechT5Model
- forward
## SpeechT5ForSpeechToText
[[autodoc]] SpeechT5ForSpeechToText
- forward
## SpeechT5ForTextToSpeech
[[autodoc]] SpeechT5ForTextToSpeech
- forward
- generate
## SpeechT5ForSpeechToSpeech
[[autodoc]] SpeechT5ForSpeechToSpeech
- forward
- generate_speech
## SpeechT5HifiGan
[[autodoc]] SpeechT5HifiGan
- forward