1738 lines
77 KiB
Python
1738 lines
77 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
import unittest
|
||
|
||
import numpy as np
|
||
import pytest
|
||
from datasets import Audio, load_dataset
|
||
from huggingface_hub import hf_hub_download, snapshot_download
|
||
|
||
from transformers import (
|
||
MODEL_FOR_CTC_MAPPING,
|
||
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
|
||
AutoFeatureExtractor,
|
||
AutoProcessor,
|
||
AutoTokenizer,
|
||
Speech2TextForConditionalGeneration,
|
||
Wav2Vec2ForCTC,
|
||
WhisperForConditionalGeneration,
|
||
)
|
||
from transformers.pipelines import AutomaticSpeechRecognitionPipeline, pipeline
|
||
from transformers.pipelines.audio_utils import chunk_bytes_iter
|
||
from transformers.pipelines.automatic_speech_recognition import _find_timestamp_sequence, chunk_iter
|
||
from transformers.testing_utils import (
|
||
is_pipeline_test,
|
||
is_torch_available,
|
||
nested_simplify,
|
||
require_pyctcdecode,
|
||
require_tf,
|
||
require_torch,
|
||
require_torch_accelerator,
|
||
require_torchaudio,
|
||
slow,
|
||
torch_device,
|
||
)
|
||
|
||
from .test_pipelines_common import ANY
|
||
|
||
|
||
if is_torch_available():
|
||
import torch
|
||
|
||
|
||
# We can't use this mixin because it assumes TF support.
|
||
# from .test_pipelines_common import CustomInputPipelineCommonMixin
|
||
|
||
|
||
@is_pipeline_test
|
||
class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase):
|
||
model_mapping = dict(
|
||
(list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING.items()) if MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING else [])
|
||
+ (MODEL_FOR_CTC_MAPPING.items() if MODEL_FOR_CTC_MAPPING else [])
|
||
)
|
||
|
||
def get_test_pipeline(self, model, tokenizer, processor):
|
||
if tokenizer is None:
|
||
# Side effect of no Fast Tokenizer class for these model, so skipping
|
||
# But the slow tokenizer test should still run as they're quite small
|
||
self.skipTest("No tokenizer available")
|
||
return
|
||
# return None, None
|
||
|
||
speech_recognizer = AutomaticSpeechRecognitionPipeline(
|
||
model=model, tokenizer=tokenizer, feature_extractor=processor
|
||
)
|
||
|
||
# test with a raw waveform
|
||
audio = np.zeros((34000,))
|
||
audio2 = np.zeros((14000,))
|
||
return speech_recognizer, [audio, audio2]
|
||
|
||
def run_pipeline_test(self, speech_recognizer, examples):
|
||
audio = np.zeros((34000,))
|
||
outputs = speech_recognizer(audio)
|
||
self.assertEqual(outputs, {"text": ANY(str)})
|
||
|
||
# Striding
|
||
audio = {"raw": audio, "stride": (0, 4000), "sampling_rate": speech_recognizer.feature_extractor.sampling_rate}
|
||
if speech_recognizer.type == "ctc":
|
||
outputs = speech_recognizer(audio)
|
||
self.assertEqual(outputs, {"text": ANY(str)})
|
||
elif "Whisper" in speech_recognizer.model.__class__.__name__:
|
||
outputs = speech_recognizer(audio)
|
||
self.assertEqual(outputs, {"text": ANY(str)})
|
||
else:
|
||
# Non CTC models cannot use striding.
|
||
with self.assertRaises(ValueError):
|
||
outputs = speech_recognizer(audio)
|
||
|
||
# Timestamps
|
||
audio = np.zeros((34000,))
|
||
if speech_recognizer.type == "ctc":
|
||
outputs = speech_recognizer(audio, return_timestamps="char")
|
||
self.assertIsInstance(outputs["chunks"], list)
|
||
n = len(outputs["chunks"])
|
||
self.assertEqual(
|
||
outputs,
|
||
{
|
||
"text": ANY(str),
|
||
"chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(n)],
|
||
},
|
||
)
|
||
|
||
outputs = speech_recognizer(audio, return_timestamps="word")
|
||
self.assertIsInstance(outputs["chunks"], list)
|
||
n = len(outputs["chunks"])
|
||
self.assertEqual(
|
||
outputs,
|
||
{
|
||
"text": ANY(str),
|
||
"chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(n)],
|
||
},
|
||
)
|
||
elif "Whisper" in speech_recognizer.model.__class__.__name__:
|
||
outputs = speech_recognizer(audio, return_timestamps=True)
|
||
self.assertIsInstance(outputs["chunks"], list)
|
||
nb_chunks = len(outputs["chunks"])
|
||
self.assertGreater(nb_chunks, 0)
|
||
self.assertEqual(
|
||
outputs,
|
||
{
|
||
"text": ANY(str),
|
||
"chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(nb_chunks)],
|
||
},
|
||
)
|
||
else:
|
||
# Non CTC models cannot use return_timestamps
|
||
with self.assertRaisesRegex(
|
||
ValueError, "^We cannot return_timestamps yet on non-CTC models apart from Whisper!$"
|
||
):
|
||
outputs = speech_recognizer(audio, return_timestamps="char")
|
||
|
||
@require_torch
|
||
@slow
|
||
def test_pt_defaults(self):
|
||
pipeline("automatic-speech-recognition", framework="pt")
|
||
|
||
@require_torch
|
||
def test_small_model_pt(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="facebook/s2t-small-mustc-en-fr-st",
|
||
tokenizer="facebook/s2t-small-mustc-en-fr-st",
|
||
framework="pt",
|
||
)
|
||
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
|
||
output = speech_recognizer(waveform)
|
||
self.assertEqual(output, {"text": "(Applaudissements)"})
|
||
output = speech_recognizer(waveform, chunk_length_s=10)
|
||
self.assertEqual(output, {"text": "(Applaudissements)"})
|
||
|
||
# Non CTC models cannot use return_timestamps
|
||
with self.assertRaisesRegex(
|
||
ValueError, "^We cannot return_timestamps yet on non-CTC models apart from Whisper!$"
|
||
):
|
||
_ = speech_recognizer(waveform, return_timestamps="char")
|
||
|
||
@slow
|
||
@require_torch_accelerator
|
||
def test_whisper_fp16(self):
|
||
speech_recognizer = pipeline(
|
||
model="openai/whisper-base",
|
||
device=torch_device,
|
||
torch_dtype=torch.float16,
|
||
)
|
||
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
|
||
speech_recognizer(waveform)
|
||
|
||
@require_torch
|
||
def test_small_model_pt_seq2seq(self):
|
||
speech_recognizer = pipeline(
|
||
model="hf-internal-testing/tiny-random-speech-encoder-decoder",
|
||
framework="pt",
|
||
)
|
||
|
||
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
|
||
output = speech_recognizer(waveform)
|
||
self.assertEqual(output, {"text": "あл ش 湯 清 ه ܬ া लᆨしث ल eか u w 全 u"})
|
||
|
||
@require_torch
|
||
def test_small_model_pt_seq2seq_gen_kwargs(self):
|
||
speech_recognizer = pipeline(
|
||
model="hf-internal-testing/tiny-random-speech-encoder-decoder",
|
||
framework="pt",
|
||
)
|
||
|
||
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
|
||
output = speech_recognizer(waveform, max_new_tokens=10, generate_kwargs={"num_beams": 2})
|
||
self.assertEqual(output, {"text": "あл † γ ت ב オ 束 泣 足"})
|
||
|
||
@slow
|
||
@require_torch
|
||
@require_pyctcdecode
|
||
def test_large_model_pt_with_lm(self):
|
||
dataset = load_dataset("Narsil/asr_dummy", streaming=True)
|
||
third_item = next(iter(dataset["test"].skip(3)))
|
||
filename = third_item["file"]
|
||
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm",
|
||
framework="pt",
|
||
)
|
||
self.assertEqual(speech_recognizer.type, "ctc_with_lm")
|
||
|
||
output = speech_recognizer(filename)
|
||
self.assertEqual(
|
||
output,
|
||
{"text": "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumaje"},
|
||
)
|
||
|
||
# Override back to pure CTC
|
||
speech_recognizer.type = "ctc"
|
||
output = speech_recognizer(filename)
|
||
# plumajre != plumaje
|
||
self.assertEqual(
|
||
output,
|
||
{
|
||
"text": (
|
||
"y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumajre"
|
||
)
|
||
},
|
||
)
|
||
|
||
speech_recognizer.type = "ctc_with_lm"
|
||
# Simple test with CTC with LM, chunking + timestamps
|
||
output = speech_recognizer(filename, chunk_length_s=2.0, return_timestamps="word")
|
||
self.assertEqual(
|
||
output,
|
||
{
|
||
"text": (
|
||
"y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumajcri"
|
||
),
|
||
"chunks": [
|
||
{"text": "y", "timestamp": (0.52, 0.54)},
|
||
{"text": "en", "timestamp": (0.6, 0.68)},
|
||
{"text": "las", "timestamp": (0.74, 0.84)},
|
||
{"text": "ramas", "timestamp": (0.94, 1.24)},
|
||
{"text": "medio", "timestamp": (1.32, 1.52)},
|
||
{"text": "sumergidas", "timestamp": (1.56, 2.22)},
|
||
{"text": "revoloteaban", "timestamp": (2.36, 3.0)},
|
||
{"text": "algunos", "timestamp": (3.06, 3.38)},
|
||
{"text": "pájaros", "timestamp": (3.46, 3.86)},
|
||
{"text": "de", "timestamp": (3.92, 4.0)},
|
||
{"text": "quimérico", "timestamp": (4.08, 4.6)},
|
||
{"text": "y", "timestamp": (4.66, 4.68)},
|
||
{"text": "legendario", "timestamp": (4.74, 5.26)},
|
||
{"text": "plumajcri", "timestamp": (5.34, 5.74)},
|
||
],
|
||
},
|
||
)
|
||
# CTC + LM models cannot use return_timestamps="char"
|
||
with self.assertRaisesRegex(
|
||
ValueError, "^CTC with LM can only predict word level timestamps, set `return_timestamps='word'`$"
|
||
):
|
||
_ = speech_recognizer(filename, return_timestamps="char")
|
||
|
||
@require_tf
|
||
def test_small_model_tf(self):
|
||
self.skipTest("Tensorflow not supported yet.")
|
||
|
||
@require_torch
|
||
def test_torch_small_no_tokenizer_files(self):
|
||
# test that model without tokenizer file cannot be loaded
|
||
with pytest.raises(OSError):
|
||
pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="patrickvonplaten/tiny-wav2vec2-no-tokenizer",
|
||
framework="pt",
|
||
)
|
||
|
||
@require_torch
|
||
@slow
|
||
def test_torch_large(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="facebook/wav2vec2-base-960h",
|
||
tokenizer="facebook/wav2vec2-base-960h",
|
||
framework="pt",
|
||
)
|
||
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
|
||
output = speech_recognizer(waveform)
|
||
self.assertEqual(output, {"text": ""})
|
||
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
filename = ds[40]["file"]
|
||
output = speech_recognizer(filename)
|
||
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
|
||
|
||
@require_torch
|
||
@slow
|
||
def test_torch_large_with_input_features(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="hf-audio/wav2vec2-bert-CV16-en",
|
||
framework="pt",
|
||
)
|
||
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
|
||
output = speech_recognizer(waveform)
|
||
self.assertEqual(output, {"text": ""})
|
||
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
filename = ds[40]["file"]
|
||
output = speech_recognizer(filename)
|
||
self.assertEqual(output, {"text": "a man said to the universe sir i exist"})
|
||
|
||
@slow
|
||
@require_torch
|
||
@slow
|
||
def test_return_timestamps_in_preprocess(self):
|
||
pipe = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="openai/whisper-tiny",
|
||
chunk_length_s=8,
|
||
stride_length_s=1,
|
||
)
|
||
data = load_dataset("librispeech_asr", "clean", split="test", streaming=True)
|
||
sample = next(iter(data))
|
||
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="en", task="transcribe")
|
||
|
||
res = pipe(sample["audio"]["array"])
|
||
self.assertEqual(res, {"text": " Conquered returned to its place amidst the tents."})
|
||
res = pipe(sample["audio"]["array"], return_timestamps=True)
|
||
self.assertEqual(
|
||
res,
|
||
{
|
||
"text": " Conquered returned to its place amidst the tents.",
|
||
"chunks": [{"timestamp": (0.0, 3.36), "text": " Conquered returned to its place amidst the tents."}],
|
||
},
|
||
)
|
||
pipe.model.generation_config.alignment_heads = [[2, 2], [3, 0], [3, 2], [3, 3], [3, 4], [3, 5]]
|
||
res = pipe(sample["audio"]["array"], return_timestamps="word")
|
||
|
||
# fmt: off
|
||
self.assertEqual(
|
||
res,
|
||
{
|
||
'text': ' Conquered returned to its place amidst the tents.',
|
||
'chunks': [
|
||
{'text': ' Conquered', 'timestamp': (0.5, 1.2)},
|
||
{'text': ' returned', 'timestamp': (1.2, 1.64)},
|
||
{'text': ' to', 'timestamp': (1.64, 1.84)},
|
||
{'text': ' its', 'timestamp': (1.84, 2.02)},
|
||
{'text': ' place', 'timestamp': (2.02, 2.28)},
|
||
{'text': ' amidst', 'timestamp': (2.28, 2.8)},
|
||
{'text': ' the', 'timestamp': (2.8, 2.98)},
|
||
{'text': ' tents.', 'timestamp': (2.98, 3.48)},
|
||
],
|
||
},
|
||
)
|
||
# fmt: on
|
||
|
||
@slow
|
||
@require_torch
|
||
def test_return_timestamps_in_preprocess_longform(self):
|
||
pipe = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="openai/whisper-tiny.en",
|
||
)
|
||
data = load_dataset("librispeech_asr", "clean", split="test", streaming=True)
|
||
samples = [next(iter(data)) for _ in range(8)]
|
||
audio = np.concatenate([sample["audio"]["array"] for sample in samples])
|
||
|
||
res = pipe(audio)
|
||
expected_output = {
|
||
"text": " Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst "
|
||
"the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst "
|
||
"the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst "
|
||
"the tents. Concord returned to its place amidst the tents."
|
||
}
|
||
self.assertEqual(res, expected_output)
|
||
res = pipe(audio, return_timestamps=True)
|
||
self.assertEqual(
|
||
res,
|
||
{
|
||
"text": " Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents.",
|
||
"chunks": [
|
||
{"timestamp": (0.0, 3.22), "text": " Concord returned to its place amidst the tents."},
|
||
{"timestamp": (3.22, 6.74), "text": " Concord returned to its place amidst the tents."},
|
||
{"timestamp": (6.74, 10.26), "text": " Concord returned to its place amidst the tents."},
|
||
{"timestamp": (10.26, 13.78), "text": " Concord returned to its place amidst the tents."},
|
||
{"timestamp": (13.78, 17.3), "text": " Concord returned to its place amidst the tents."},
|
||
{"timestamp": (17.3, 20.82), "text": " Concord returned to its place amidst the tents."},
|
||
{"timestamp": (20.82, 24.34), "text": " Concord returned to its place amidst the tents."},
|
||
{"timestamp": (24.34, 27.86), "text": " Concord returned to its place amidst the tents."},
|
||
],
|
||
},
|
||
)
|
||
pipe.model.generation_config.alignment_heads = [[2, 2], [3, 0], [3, 2], [3, 3], [3, 4], [3, 5]]
|
||
res = pipe(audio, return_timestamps="word")
|
||
|
||
# fmt: off
|
||
self.assertEqual(
|
||
res["chunks"][:15],
|
||
[
|
||
{"text": " Concord", "timestamp": (0.5, 0.94)},
|
||
{"text": " returned", "timestamp": (0.94, 1.52)},
|
||
{"text": " to", "timestamp": (1.52, 1.78)},
|
||
{"text": " its", "timestamp": (1.78, 1.98)},
|
||
{"text": " place", "timestamp": (1.98, 2.16)},
|
||
{"text": " amidst", "timestamp": (2.16, 2.5)},
|
||
{"text": " the", "timestamp": (2.5, 2.9)},
|
||
{"text": " tents.", "timestamp": (2.9, 4.2)},
|
||
{"text": " Concord", "timestamp": (4.2, 4.5)},
|
||
{"text": " returned", "timestamp": (4.5, 5.0)},
|
||
{"text": " to", "timestamp": (5.0, 5.28)},
|
||
{"text": " its", "timestamp": (5.28, 5.48)},
|
||
{"text": " place", "timestamp": (5.48, 5.7)},
|
||
{"text": " amidst", "timestamp": (5.7, 6.02)},
|
||
{"text": " the", "timestamp": (6.02, 6.4)}
|
||
|
||
|
||
],
|
||
)
|
||
# fmt: on
|
||
|
||
@require_torch
|
||
def test_return_timestamps_in_init(self):
|
||
# segment-level timestamps are accepted
|
||
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
||
tokenizer = AutoTokenizer.from_pretrained("openai/whisper-tiny")
|
||
feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-tiny")
|
||
|
||
dummy_speech = np.ones(100)
|
||
|
||
pipe = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model=model,
|
||
feature_extractor=feature_extractor,
|
||
tokenizer=tokenizer,
|
||
chunk_length_s=8,
|
||
stride_length_s=1,
|
||
return_timestamps=True,
|
||
)
|
||
|
||
_ = pipe(dummy_speech)
|
||
|
||
# word-level timestamps are accepted
|
||
pipe = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model=model,
|
||
feature_extractor=feature_extractor,
|
||
tokenizer=tokenizer,
|
||
chunk_length_s=8,
|
||
stride_length_s=1,
|
||
return_timestamps="word",
|
||
)
|
||
|
||
_ = pipe(dummy_speech)
|
||
|
||
# char-level timestamps are not accepted
|
||
with self.assertRaisesRegex(
|
||
ValueError,
|
||
"^Whisper cannot return `char` timestamps, only word level or segment level timestamps. "
|
||
"Use `return_timestamps='word'` or `return_timestamps=True` respectively.$",
|
||
):
|
||
pipe = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model=model,
|
||
feature_extractor=feature_extractor,
|
||
tokenizer=tokenizer,
|
||
chunk_length_s=8,
|
||
stride_length_s=1,
|
||
return_timestamps="char",
|
||
)
|
||
|
||
_ = pipe(dummy_speech)
|
||
|
||
@require_torch
|
||
@slow
|
||
def test_torch_whisper(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="openai/whisper-tiny",
|
||
framework="pt",
|
||
)
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
filename = ds[40]["file"]
|
||
output = speech_recognizer(filename)
|
||
self.assertEqual(output, {"text": " A man said to the universe, Sir, I exist."})
|
||
|
||
output = speech_recognizer([filename], chunk_length_s=5, batch_size=4)
|
||
self.assertEqual(output, [{"text": " A man said to the universe, Sir, I exist."}])
|
||
|
||
@slow
|
||
def test_find_longest_common_subsequence(self):
|
||
max_source_positions = 1500
|
||
processor = AutoProcessor.from_pretrained("openai/whisper-tiny")
|
||
|
||
previous_sequence = [[51492, 406, 3163, 1953, 466, 13, 51612, 51612]]
|
||
self.assertEqual(
|
||
processor.decode(previous_sequence[0], output_offsets=True),
|
||
{
|
||
"text": " not worth thinking about.",
|
||
"offsets": [{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)}],
|
||
},
|
||
)
|
||
|
||
# Merge when the previous sequence is a suffix of the next sequence
|
||
# fmt: off
|
||
next_sequences_1 = [
|
||
[50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 50614, 50614, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]
|
||
]
|
||
# fmt: on
|
||
self.assertEqual(
|
||
processor.decode(next_sequences_1[0], output_offsets=True),
|
||
{
|
||
"text": (
|
||
" of spectators, retrievality is not worth thinking about. His instant panic was followed by a"
|
||
" small, sharp blow high on his chest.<|endoftext|>"
|
||
),
|
||
"offsets": [
|
||
{"text": " of spectators, retrievality is not worth thinking about.", "timestamp": (0.0, 5.0)},
|
||
{
|
||
"text": " His instant panic was followed by a small, sharp blow high on his chest.",
|
||
"timestamp": (5.0, 9.4),
|
||
},
|
||
],
|
||
},
|
||
)
|
||
merge = _find_timestamp_sequence(
|
||
[[previous_sequence, (480_000, 0, 0)], [next_sequences_1, (480_000, 120_000, 0)]],
|
||
processor.tokenizer,
|
||
processor.feature_extractor,
|
||
max_source_positions,
|
||
)
|
||
|
||
# fmt: off
|
||
self.assertEqual(
|
||
merge,
|
||
[51492, 406, 3163, 1953, 466, 13, 51739, 51739, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51959],
|
||
)
|
||
# fmt: on
|
||
self.assertEqual(
|
||
processor.decode(merge, output_offsets=True),
|
||
{
|
||
"text": (
|
||
" not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
|
||
" chest."
|
||
),
|
||
"offsets": [
|
||
{"text": " not worth thinking about.", "timestamp": (22.56, 27.5)},
|
||
{
|
||
"text": " His instant panic was followed by a small, sharp blow high on his chest.",
|
||
"timestamp": (27.5, 31.900000000000002),
|
||
},
|
||
],
|
||
},
|
||
)
|
||
|
||
# Merge when the sequence is in the middle of the 1st next sequence
|
||
# fmt: off
|
||
next_sequences_2 = [
|
||
[50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]
|
||
]
|
||
# fmt: on
|
||
# {'text': ' of spectators, retrievality is not worth thinking about. His instant panic was followed by a small, sharp blow high on his chest.','timestamp': (0.0, 9.4)}
|
||
merge = _find_timestamp_sequence(
|
||
[[previous_sequence, (480_000, 0, 0)], [next_sequences_2, (480_000, 120_000, 0)]],
|
||
processor.tokenizer,
|
||
processor.feature_extractor,
|
||
max_source_positions,
|
||
)
|
||
# fmt: off
|
||
self.assertEqual(
|
||
merge,
|
||
[51492, 406, 3163, 1953, 466, 13, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51959],
|
||
)
|
||
# fmt: on
|
||
self.assertEqual(
|
||
processor.decode(merge, output_offsets=True),
|
||
{
|
||
"text": (
|
||
" not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
|
||
" chest."
|
||
),
|
||
"offsets": [
|
||
{
|
||
"text": (
|
||
" not worth thinking about. His instant panic was followed by a small, sharp blow high on"
|
||
" his chest."
|
||
),
|
||
"timestamp": (22.56, 31.900000000000002),
|
||
},
|
||
],
|
||
},
|
||
)
|
||
|
||
# Merge when the previous sequence is not included in the current sequence
|
||
next_sequences_3 = [[50364, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50584, 50257]] # fmt: skip
|
||
# {'text': ' His instant panic was followed by a small, sharp blow high on his chest.','timestamp': (0.0, 9.4)}
|
||
merge = _find_timestamp_sequence(
|
||
[[previous_sequence, (480_000, 0, 0)], [next_sequences_3, (480_000, 120_000, 0)]],
|
||
processor.tokenizer,
|
||
processor.feature_extractor,
|
||
max_source_positions,
|
||
)
|
||
self.assertEqual(
|
||
merge,
|
||
[51492, 406, 3163, 1953, 466, 13, 51612, 51612, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51832],
|
||
) # fmt: skip
|
||
self.assertEqual(
|
||
processor.decode(merge, output_offsets=True),
|
||
{
|
||
"text": (
|
||
" not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
|
||
" chest."
|
||
),
|
||
"offsets": [
|
||
{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
|
||
{
|
||
"text": " His instant panic was followed by a small, sharp blow high on his chest.",
|
||
"timestamp": (24.96, 29.36),
|
||
},
|
||
],
|
||
},
|
||
)
|
||
# last case is when the sequence is not in the first next predicted start and end of timestamp
|
||
next_sequences_3 = [
|
||
[50364, 2812, 9836, 14783, 390, 406, 3163, 1953, 466, 13, 50634, 50634, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50934]
|
||
] # fmt: skip
|
||
merge = _find_timestamp_sequence(
|
||
[[previous_sequence, (480_000, 0, 0)], [next_sequences_3, (480_000, 167_000, 0)]],
|
||
processor.tokenizer,
|
||
processor.feature_extractor,
|
||
max_source_positions,
|
||
)
|
||
self.assertEqual(
|
||
merge,
|
||
[51492, 406, 3163, 1953, 466, 13, 51612, 51612, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51912]
|
||
) # fmt: skip
|
||
self.assertEqual(
|
||
processor.decode(merge, output_offsets=True),
|
||
{
|
||
"text": (
|
||
" not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
|
||
" chest."
|
||
),
|
||
"offsets": [
|
||
{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
|
||
{
|
||
"text": " His instant panic was followed by a small, sharp blow high on his chest.",
|
||
"timestamp": (24.96, 30.96),
|
||
},
|
||
],
|
||
},
|
||
)
|
||
|
||
@slow
|
||
@require_torch
|
||
def test_whisper_timestamp_prediction(self):
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
array = np.concatenate(
|
||
[ds[40]["audio"]["array"], ds[41]["audio"]["array"], ds[42]["audio"]["array"], ds[43]["audio"]["array"]]
|
||
)
|
||
pipe = pipeline(
|
||
model="openai/whisper-small",
|
||
return_timestamps=True,
|
||
)
|
||
|
||
output = pipe(ds[40]["audio"])
|
||
self.assertDictEqual(
|
||
output,
|
||
{
|
||
"text": " A man said to the universe, Sir, I exist.",
|
||
"chunks": [{"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 4.26)}],
|
||
},
|
||
)
|
||
|
||
output = pipe(array, chunk_length_s=10)
|
||
self.assertDictEqual(
|
||
nested_simplify(output),
|
||
{
|
||
"chunks": [
|
||
{"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 5.5)},
|
||
{
|
||
"text": (
|
||
" Sweat covered Brion's body, trickling into the "
|
||
"tight-loan cloth that was the only garment he wore, the "
|
||
"cut"
|
||
),
|
||
"timestamp": (5.5, 11.95),
|
||
},
|
||
{
|
||
"text": (
|
||
" on his chest still dripping blood, the ache of his "
|
||
"overstrained eyes, even the soaring arena around him "
|
||
"with"
|
||
),
|
||
"timestamp": (11.95, 19.61),
|
||
},
|
||
{
|
||
"text": " the thousands of spectators, retrievality is not worth thinking about.",
|
||
"timestamp": (19.61, 25.0),
|
||
},
|
||
{
|
||
"text": " His instant panic was followed by a small, sharp blow high on his chest.",
|
||
"timestamp": (25.0, 29.4),
|
||
},
|
||
],
|
||
"text": (
|
||
" A man said to the universe, Sir, I exist. Sweat covered Brion's "
|
||
"body, trickling into the tight-loan cloth that was the only garment "
|
||
"he wore, the cut on his chest still dripping blood, the ache of his "
|
||
"overstrained eyes, even the soaring arena around him with the "
|
||
"thousands of spectators, retrievality is not worth thinking about. "
|
||
"His instant panic was followed by a small, sharp blow high on his "
|
||
"chest."
|
||
),
|
||
},
|
||
)
|
||
|
||
output = pipe(array)
|
||
self.assertDictEqual(
|
||
output,
|
||
{
|
||
"chunks": [
|
||
{"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 5.5)},
|
||
{
|
||
"text": (
|
||
" Sweat covered Brion's body, trickling into the "
|
||
"tight-loan cloth that was the only garment"
|
||
),
|
||
"timestamp": (5.5, 10.18),
|
||
},
|
||
{"text": " he wore.", "timestamp": (10.18, 11.68)},
|
||
{"text": " The cut on his chest still dripping blood.", "timestamp": (11.68, 14.92)},
|
||
{"text": " The ache of his overstrained eyes.", "timestamp": (14.92, 17.6)},
|
||
{
|
||
"text": (
|
||
" Even the soaring arena around him with the thousands of spectators were trivialities"
|
||
),
|
||
"timestamp": (17.6, 22.56),
|
||
},
|
||
{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
|
||
],
|
||
"text": (
|
||
" A man said to the universe, Sir, I exist. Sweat covered Brion's "
|
||
"body, trickling into the tight-loan cloth that was the only garment "
|
||
"he wore. The cut on his chest still dripping blood. The ache of his "
|
||
"overstrained eyes. Even the soaring arena around him with the "
|
||
"thousands of spectators were trivialities not worth thinking about."
|
||
),
|
||
},
|
||
)
|
||
|
||
@slow
|
||
@require_torch
|
||
def test_whisper_large_timestamp_prediction(self):
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
array = np.concatenate(
|
||
[ds[40]["audio"]["array"], ds[41]["audio"]["array"], ds[42]["audio"]["array"], ds[43]["audio"]["array"]]
|
||
)
|
||
pipe = pipeline(model="openai/whisper-large-v3", return_timestamps=True)
|
||
|
||
output = pipe(ds[40]["audio"])
|
||
self.assertDictEqual(
|
||
output,
|
||
{
|
||
"text": " A man said to the universe, Sir, I exist.",
|
||
"chunks": [{"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 4.08)}],
|
||
},
|
||
)
|
||
|
||
output = pipe(array, chunk_length_s=10)
|
||
|
||
self.assertDictEqual(
|
||
nested_simplify(output),
|
||
{
|
||
"chunks": [
|
||
{"timestamp": (0.0, 2.0), "text": (" A man said to the universe,")},
|
||
{"timestamp": (2.0, 4.1), "text": (" Sir, I exist.")},
|
||
{"timestamp": (5.14, 5.96), "text": (" Sweat covered")},
|
||
{"timestamp": (5.96, 8.02), "text": (" Breon's body, trickling into")},
|
||
{"timestamp": (8.02, 10.67), "text": (" the tight loincloth that was the only garment he wore,")},
|
||
{"timestamp": (10.67, 13.67), "text": (" the cut on his chest still dripping blood,")},
|
||
{"timestamp": (13.67, 17.61), "text": (" the ache of his overstrained eyes.")},
|
||
{
|
||
"timestamp": (17.61, 24.0),
|
||
"text": (
|
||
" Even the soaring arena around him with thousands of spectators were trivialities not worth thinking about."
|
||
),
|
||
},
|
||
{
|
||
"timestamp": (24.0, 29.94),
|
||
"text": (" His instant of panic was followed by a small, sharp blow high on his chest."),
|
||
},
|
||
],
|
||
"text": (
|
||
" A man said to the universe, Sir, I exist. Sweat covered Breon's"
|
||
" body, trickling into the tight loincloth that was the only garment"
|
||
" he wore, the cut on his chest still dripping blood, the ache of his"
|
||
" overstrained eyes. Even the soaring arena around him with thousands"
|
||
" of spectators were trivialities not worth thinking about. His "
|
||
"instant of panic was followed by a small, sharp blow high on his chest."
|
||
),
|
||
},
|
||
)
|
||
|
||
output = pipe(array)
|
||
self.assertDictEqual(
|
||
output,
|
||
{
|
||
"chunks": [
|
||
{"timestamp": (0.0, 1.96), "text": " A man said to the universe,"},
|
||
{"timestamp": (2.7, 4.1), "text": " Sir, I exist."},
|
||
{"timestamp": (5.14, 6.84), "text": " Sweat covered Brion's body,"},
|
||
{
|
||
"timestamp": (7.4, 10.68),
|
||
"text": " trickling into the tight loincloth that was the only garment he wore,",
|
||
},
|
||
{"timestamp": (11.6, 13.94), "text": " the cut on his chest still dripping blood,"},
|
||
{"timestamp": (14.78, 16.72), "text": " the ache of his overstrained eyes,"},
|
||
{
|
||
"timestamp": (17.32, 21.16),
|
||
"text": " even the soaring arena around him with the thousands of spectators",
|
||
},
|
||
{"timestamp": (21.16, 23.94), "text": " were trivialities not worth thinking about."},
|
||
{
|
||
"timestamp": (24.42, 29.94),
|
||
"text": " His instant panic was followed by a small sharp blow high on his chest.",
|
||
},
|
||
],
|
||
"text": (
|
||
" A man said to the universe, Sir, I exist. Sweat covered Brion's body,"
|
||
" trickling into the tight loincloth that was the only garment he wore, "
|
||
"the cut on his chest still dripping blood, the ache of his overstrained "
|
||
"eyes, even the soaring arena around him with the thousands of spectators "
|
||
"were trivialities not worth thinking about. His instant panic was followed "
|
||
"by a small sharp blow high on his chest."
|
||
),
|
||
},
|
||
)
|
||
|
||
@slow
|
||
@require_torch
|
||
def test_whisper_word_timestamps_batched(self):
|
||
pipe = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="openai/whisper-tiny",
|
||
chunk_length_s=3,
|
||
return_timestamps="word",
|
||
)
|
||
data = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
||
sample = data[0]["audio"]
|
||
|
||
# not the same output as test_simple_whisper_asr because of chunking
|
||
EXPECTED_OUTPUT = {
|
||
"text": " Mr. Quilder is the apostle of the middle classes and we are glad to welcome his gospel.",
|
||
"chunks": [
|
||
{"text": " Mr.", "timestamp": (0.48, 0.96)},
|
||
{"text": " Quilder", "timestamp": (0.96, 1.24)},
|
||
{"text": " is", "timestamp": (1.24, 1.5)},
|
||
{"text": " the", "timestamp": (1.5, 1.72)},
|
||
{"text": " apostle", "timestamp": (1.72, 1.98)},
|
||
{"text": " of", "timestamp": (1.98, 2.32)},
|
||
{"text": " the", "timestamp": (2.32, 2.5)},
|
||
{"text": " middle", "timestamp": (2.5, 2.68)},
|
||
{"text": " classes", "timestamp": (2.68, 3.2)},
|
||
{"text": " and", "timestamp": (3.2, 3.56)},
|
||
{"text": " we", "timestamp": (3.56, 3.68)},
|
||
{"text": " are", "timestamp": (3.68, 3.8)},
|
||
{"text": " glad", "timestamp": (3.8, 4.1)},
|
||
{"text": " to", "timestamp": (4.1, 4.34)},
|
||
{"text": " welcome", "timestamp": (4.3, 4.6)},
|
||
{"text": " his", "timestamp": (4.6, 4.94)},
|
||
{"text": " gospel.", "timestamp": (4.94, 5.82)},
|
||
],
|
||
}
|
||
|
||
# batch size 1: copy the audio sample since pipeline consumes it
|
||
output = pipe(sample.copy(), batch_size=1)
|
||
self.assertDictEqual(output, EXPECTED_OUTPUT)
|
||
|
||
# batch size 2: input audio is chunked into smaller pieces so it's testing batching
|
||
output = pipe(sample, batch_size=2)
|
||
self.assertDictEqual(output, EXPECTED_OUTPUT)
|
||
|
||
@slow
|
||
@require_torch
|
||
def test_whisper_large_word_timestamps_batched(self):
|
||
pipe = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="openai/whisper-large-v3",
|
||
return_timestamps="word",
|
||
)
|
||
data = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
||
sample = data[0]["audio"]
|
||
|
||
# not the same output as test_simple_whisper_asr because of chunking
|
||
EXPECTED_OUTPUT = {
|
||
"text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.",
|
||
"chunks": [
|
||
{"text": " Mr.", "timestamp": (0.0, 0.74)},
|
||
{"text": " Quilter", "timestamp": (0.74, 1.04)},
|
||
{"text": " is", "timestamp": (1.04, 1.3)},
|
||
{"text": " the", "timestamp": (1.3, 1.44)},
|
||
{"text": " apostle", "timestamp": (1.44, 1.74)},
|
||
{"text": " of", "timestamp": (1.74, 2.18)},
|
||
{"text": " the", "timestamp": (2.18, 2.28)},
|
||
{"text": " middle", "timestamp": (2.28, 2.5)},
|
||
{"text": " classes,", "timestamp": (2.5, 3.0)},
|
||
{"text": " and", "timestamp": (3.0, 3.4)},
|
||
{"text": " we", "timestamp": (3.4, 3.5)},
|
||
{"text": " are", "timestamp": (3.5, 3.6)},
|
||
{"text": " glad", "timestamp": (3.6, 3.84)},
|
||
{"text": " to", "timestamp": (3.84, 4.1)},
|
||
{"text": " welcome", "timestamp": (4.1, 4.4)},
|
||
{"text": " his", "timestamp": (4.4, 4.7)},
|
||
{"text": " gospel.", "timestamp": (4.7, 5.34)},
|
||
],
|
||
}
|
||
|
||
# batch size 1: copy the audio sample since pipeline consumes it
|
||
output = pipe(sample.copy(), batch_size=1)
|
||
self.assertDictEqual(output, EXPECTED_OUTPUT)
|
||
|
||
# batch size 2: input audio is chunked into smaller pieces so it's testing batching
|
||
output = pipe(sample, batch_size=2)
|
||
self.assertDictEqual(output, EXPECTED_OUTPUT)
|
||
|
||
@require_torch
|
||
@slow
|
||
def test_torch_speech_encoder_decoder(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="facebook/s2t-wav2vec2-large-en-de",
|
||
feature_extractor="facebook/s2t-wav2vec2-large-en-de",
|
||
framework="pt",
|
||
)
|
||
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
filename = ds[40]["file"]
|
||
output = speech_recognizer(filename)
|
||
self.assertEqual(output, {"text": 'Ein Mann sagte zum Universum : " Sir, ich existiert! "'})
|
||
|
||
@slow
|
||
@require_torch
|
||
def test_simple_wav2vec2(self):
|
||
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
||
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
||
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
|
||
|
||
asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
|
||
|
||
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
|
||
output = asr(waveform)
|
||
self.assertEqual(output, {"text": ""})
|
||
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
filename = ds[40]["file"]
|
||
output = asr(filename)
|
||
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
|
||
|
||
filename = ds[40]["file"]
|
||
with open(filename, "rb") as f:
|
||
data = f.read()
|
||
output = asr(data)
|
||
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
|
||
|
||
@slow
|
||
@require_torch
|
||
@require_torchaudio
|
||
def test_simple_s2t(self):
|
||
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-it-st")
|
||
tokenizer = AutoTokenizer.from_pretrained("facebook/s2t-small-mustc-en-it-st")
|
||
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-mustc-en-it-st")
|
||
|
||
asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
|
||
|
||
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
|
||
|
||
output = asr(waveform)
|
||
self.assertEqual(output, {"text": "(Applausi)"})
|
||
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
filename = ds[40]["file"]
|
||
output = asr(filename)
|
||
self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})
|
||
|
||
filename = ds[40]["file"]
|
||
with open(filename, "rb") as f:
|
||
data = f.read()
|
||
output = asr(data)
|
||
self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})
|
||
|
||
@slow
|
||
@require_torch
|
||
@require_torchaudio
|
||
def test_simple_whisper_asr(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="openai/whisper-tiny.en",
|
||
framework="pt",
|
||
)
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
||
filename = ds[0]["file"]
|
||
output = speech_recognizer(filename)
|
||
self.assertEqual(
|
||
output,
|
||
{"text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."},
|
||
)
|
||
output = speech_recognizer(filename, return_timestamps=True)
|
||
self.assertEqual(
|
||
output,
|
||
{
|
||
"text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.",
|
||
"chunks": [
|
||
{
|
||
"text": (
|
||
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
|
||
),
|
||
"timestamp": (0.0, 5.44),
|
||
}
|
||
],
|
||
},
|
||
)
|
||
speech_recognizer.model.generation_config.alignment_heads = [[2, 2], [3, 0], [3, 2], [3, 3], [3, 4], [3, 5]]
|
||
output = speech_recognizer(filename, return_timestamps="word")
|
||
# fmt: off
|
||
self.assertEqual(
|
||
output,
|
||
{
|
||
'text': ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.',
|
||
'chunks': [
|
||
{'text': ' Mr.', 'timestamp': (0.38, 1.04)},
|
||
{'text': ' Quilter', 'timestamp': (1.04, 1.18)},
|
||
{'text': ' is', 'timestamp': (1.18, 1.44)},
|
||
{'text': ' the', 'timestamp': (1.44, 1.58)},
|
||
{'text': ' apostle', 'timestamp': (1.58, 1.98)},
|
||
{'text': ' of', 'timestamp': (1.98, 2.32)},
|
||
{'text': ' the', 'timestamp': (2.32, 2.46)},
|
||
{'text': ' middle', 'timestamp': (2.46, 2.56)},
|
||
{'text': ' classes,', 'timestamp': (2.56, 3.4)},
|
||
{'text': ' and', 'timestamp': (3.4, 3.54)},
|
||
{'text': ' we', 'timestamp': (3.54, 3.62)},
|
||
{'text': ' are', 'timestamp': (3.62, 3.72)},
|
||
{'text': ' glad', 'timestamp': (3.72, 4.0)},
|
||
{'text': ' to', 'timestamp': (4.0, 4.26)},
|
||
{'text': ' welcome', 'timestamp': (4.26, 4.56)},
|
||
{'text': ' his', 'timestamp': (4.56, 4.92)},
|
||
{'text': ' gospel.', 'timestamp': (4.92, 5.84)}
|
||
]
|
||
}
|
||
)
|
||
# fmt: on
|
||
|
||
# Whisper can only predict segment level timestamps or word level, not character level
|
||
with self.assertRaisesRegex(
|
||
ValueError,
|
||
"^Whisper cannot return `char` timestamps, only word level or segment level timestamps. "
|
||
"Use `return_timestamps='word'` or `return_timestamps=True` respectively.$",
|
||
):
|
||
_ = speech_recognizer(filename, return_timestamps="char")
|
||
|
||
@slow
|
||
@require_torch
|
||
@require_torchaudio
|
||
def test_simple_whisper_translation(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="openai/whisper-large",
|
||
framework="pt",
|
||
)
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
filename = ds[40]["file"]
|
||
output = speech_recognizer(filename)
|
||
self.assertEqual(output, {"text": " A man said to the universe, Sir, I exist."})
|
||
|
||
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
|
||
tokenizer = AutoTokenizer.from_pretrained("openai/whisper-large")
|
||
feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-large")
|
||
|
||
speech_recognizer_2 = AutomaticSpeechRecognitionPipeline(
|
||
model=model, tokenizer=tokenizer, feature_extractor=feature_extractor
|
||
)
|
||
output_2 = speech_recognizer_2(filename)
|
||
self.assertEqual(output, output_2)
|
||
|
||
# either use generate_kwargs or set the model's generation_config
|
||
# model.generation_config.task = "transcribe"
|
||
# model.generation_config.lang = "<|it|>"
|
||
speech_translator = AutomaticSpeechRecognitionPipeline(
|
||
model=model,
|
||
tokenizer=tokenizer,
|
||
feature_extractor=feature_extractor,
|
||
generate_kwargs={"task": "transcribe", "language": "<|it|>"},
|
||
)
|
||
output_3 = speech_translator(filename)
|
||
self.assertEqual(output_3, {"text": " Un uomo ha detto all'universo, Sir, esiste."})
|
||
|
||
@slow
|
||
@require_torch
|
||
def test_whisper_language(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="openai/whisper-tiny.en",
|
||
framework="pt",
|
||
)
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
||
filename = ds[0]["file"]
|
||
|
||
# 1. English-only model compatible with no language argument
|
||
output = speech_recognizer(filename)
|
||
self.assertEqual(
|
||
output,
|
||
{"text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."},
|
||
)
|
||
|
||
# 2. English-only Whisper does not accept the language argument
|
||
with self.assertRaisesRegex(
|
||
ValueError,
|
||
"Cannot specify `task` or `language` for an English-only model. If the model is intended to be multilingual, "
|
||
"pass `is_multilingual=True` to generate, or update the generation config.",
|
||
):
|
||
_ = speech_recognizer(filename, generate_kwargs={"language": "en"})
|
||
|
||
# 3. Multilingual model accepts language argument
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="openai/whisper-tiny",
|
||
framework="pt",
|
||
)
|
||
output = speech_recognizer(filename, generate_kwargs={"language": "en"})
|
||
self.assertEqual(
|
||
output,
|
||
{"text": " Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel."},
|
||
)
|
||
|
||
@slow
|
||
@require_torch
|
||
@require_torchaudio
|
||
def test_xls_r_to_en(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="facebook/wav2vec2-xls-r-1b-21-to-en",
|
||
feature_extractor="facebook/wav2vec2-xls-r-1b-21-to-en",
|
||
framework="pt",
|
||
)
|
||
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
filename = ds[40]["file"]
|
||
output = speech_recognizer(filename)
|
||
self.assertEqual(output, {"text": "A man said to the universe: “Sir, I exist."})
|
||
|
||
@slow
|
||
@require_torch
|
||
@require_torchaudio
|
||
def test_xls_r_from_en(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="facebook/wav2vec2-xls-r-1b-en-to-15",
|
||
feature_extractor="facebook/wav2vec2-xls-r-1b-en-to-15",
|
||
framework="pt",
|
||
)
|
||
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
filename = ds[40]["file"]
|
||
output = speech_recognizer(filename)
|
||
self.assertEqual(output, {"text": "Ein Mann sagte zu dem Universum, Sir, ich bin da."})
|
||
|
||
@slow
|
||
@require_torch
|
||
@require_torchaudio
|
||
def test_speech_to_text_leveraged(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="patrickvonplaten/wav2vec2-2-bart-base",
|
||
feature_extractor="patrickvonplaten/wav2vec2-2-bart-base",
|
||
tokenizer=AutoTokenizer.from_pretrained("patrickvonplaten/wav2vec2-2-bart-base"),
|
||
framework="pt",
|
||
)
|
||
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
filename = ds[40]["file"]
|
||
|
||
output = speech_recognizer(filename)
|
||
self.assertEqual(output, {"text": "a man said to the universe sir i exist"})
|
||
|
||
@slow
|
||
@require_torch_accelerator
|
||
def test_wav2vec2_conformer_float16(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="facebook/wav2vec2-conformer-rope-large-960h-ft",
|
||
device=torch_device,
|
||
torch_dtype=torch.float16,
|
||
framework="pt",
|
||
)
|
||
|
||
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
||
sample = dataset[0]["audio"]
|
||
|
||
output = speech_recognizer(sample)
|
||
self.assertEqual(
|
||
output,
|
||
{"text": "MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL"},
|
||
)
|
||
|
||
@require_torch
|
||
def test_chunking_fast(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="hf-internal-testing/tiny-random-wav2vec2",
|
||
chunk_length_s=10.0,
|
||
)
|
||
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
audio = ds[40]["audio"]["array"]
|
||
|
||
n_repeats = 2
|
||
audio_tiled = np.tile(audio, n_repeats)
|
||
output = speech_recognizer([audio_tiled], batch_size=2)
|
||
self.assertEqual(output, [{"text": ANY(str)}])
|
||
self.assertEqual(output[0]["text"][:6], "ZBT ZC")
|
||
|
||
@require_torch
|
||
def test_return_timestamps_ctc_fast(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="hf-internal-testing/tiny-random-wav2vec2",
|
||
)
|
||
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
# Take short audio to keep the test readable
|
||
audio = ds[40]["audio"]["array"][:800]
|
||
|
||
output = speech_recognizer(audio, return_timestamps="char")
|
||
self.assertEqual(
|
||
output,
|
||
{
|
||
"text": "ZBT ZX G",
|
||
"chunks": [
|
||
{"text": " ", "timestamp": (0.0, 0.012)},
|
||
{"text": "Z", "timestamp": (0.012, 0.016)},
|
||
{"text": "B", "timestamp": (0.016, 0.02)},
|
||
{"text": "T", "timestamp": (0.02, 0.024)},
|
||
{"text": " ", "timestamp": (0.024, 0.028)},
|
||
{"text": "Z", "timestamp": (0.028, 0.032)},
|
||
{"text": "X", "timestamp": (0.032, 0.036)},
|
||
{"text": " ", "timestamp": (0.036, 0.04)},
|
||
{"text": "G", "timestamp": (0.04, 0.044)},
|
||
],
|
||
},
|
||
)
|
||
|
||
output = speech_recognizer(audio, return_timestamps="word")
|
||
self.assertEqual(
|
||
output,
|
||
{
|
||
"text": "ZBT ZX G",
|
||
"chunks": [
|
||
{"text": "ZBT", "timestamp": (0.012, 0.024)},
|
||
{"text": "ZX", "timestamp": (0.028, 0.036)},
|
||
{"text": "G", "timestamp": (0.04, 0.044)},
|
||
],
|
||
},
|
||
)
|
||
|
||
@require_torch
|
||
@require_pyctcdecode
|
||
def test_chunking_fast_with_lm(self):
|
||
speech_recognizer = pipeline(
|
||
model="hf-internal-testing/processor_with_lm",
|
||
chunk_length_s=10.0,
|
||
)
|
||
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
audio = ds[40]["audio"]["array"]
|
||
|
||
n_repeats = 2
|
||
audio_tiled = np.tile(audio, n_repeats)
|
||
# Batch_size = 1
|
||
output1 = speech_recognizer([audio_tiled], batch_size=1)
|
||
self.assertEqual(output1, [{"text": ANY(str)}])
|
||
self.assertEqual(output1[0]["text"][:6], "<s> <s")
|
||
|
||
# batch_size = 2
|
||
output2 = speech_recognizer([audio_tiled], batch_size=2)
|
||
self.assertEqual(output2, [{"text": ANY(str)}])
|
||
self.assertEqual(output2[0]["text"][:6], "<s> <s")
|
||
|
||
# TODO There is an offby one error because of the ratio.
|
||
# Maybe logits get affected by the padding on this random
|
||
# model is more likely. Add some masking ?
|
||
# self.assertEqual(output1, output2)
|
||
|
||
@require_torch
|
||
@require_pyctcdecode
|
||
def test_with_lm_fast(self):
|
||
speech_recognizer = pipeline(
|
||
model="hf-internal-testing/processor_with_lm",
|
||
)
|
||
self.assertEqual(speech_recognizer.type, "ctc_with_lm")
|
||
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
audio = ds[40]["audio"]["array"]
|
||
|
||
n_repeats = 2
|
||
audio_tiled = np.tile(audio, n_repeats)
|
||
|
||
output = speech_recognizer([audio_tiled], batch_size=2)
|
||
self.assertEqual(output, [{"text": ANY(str)}])
|
||
self.assertEqual(output[0]["text"][:6], "<s> <s")
|
||
|
||
# Making sure the argument are passed to the decoder
|
||
# Since no change happens in the result, check the error comes from
|
||
# the `decode_beams` function.
|
||
with self.assertRaises(TypeError) as e:
|
||
output = speech_recognizer([audio_tiled], decoder_kwargs={"num_beams": 2})
|
||
self.assertContains(e.msg, "TypeError: decode_beams() got an unexpected keyword argument 'num_beams'")
|
||
output = speech_recognizer([audio_tiled], decoder_kwargs={"beam_width": 2})
|
||
|
||
@require_torch
|
||
@require_pyctcdecode
|
||
def test_with_local_lm_fast(self):
|
||
local_dir = snapshot_download("hf-internal-testing/processor_with_lm")
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model=local_dir,
|
||
)
|
||
self.assertEqual(speech_recognizer.type, "ctc_with_lm")
|
||
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
audio = ds[40]["audio"]["array"]
|
||
|
||
n_repeats = 2
|
||
audio_tiled = np.tile(audio, n_repeats)
|
||
|
||
output = speech_recognizer([audio_tiled], batch_size=2)
|
||
|
||
self.assertEqual(output, [{"text": ANY(str)}])
|
||
self.assertEqual(output[0]["text"][:6], "<s> <s")
|
||
|
||
@require_torch
|
||
@slow
|
||
def test_whisper_longform(self):
|
||
# fmt: off
|
||
EXPECTED_RESULT = " Folks, if you watch the show, you know, I spent a lot of time right over there. Patiently and astutely scrutinizing the boxwood and mahogany chest set of the day's biggest stories developing the central headline pawns, definitely maneuvering an oso topical night to F6, fainting a classic Sicilian, nade door variation on the news, all the while seeing eight moves deep and patiently marshalling the latest press releases into a fisher's shows in Lip Nitsky attack that culminates in the elegant lethal slow-played, all-passant checkmate that is my nightly monologue. But sometimes, sometimes, folks, I. CHEERING AND APPLAUSE Sometimes I startle away, cubside down in the monkey bars of a condemned playground on a super fun site. Get all hept up on goofballs. Rummage that were discarded tag bag of defective toys. Yank out a fist bowl of disembodied doll limbs, toss them on Saturday, Rusty Cargo, container down by the Wharf, and challenge toothless drifters to the godless bughouse lets of tournament that is my segment. MUSIC Meanwhile!"
|
||
# fmt: on
|
||
|
||
processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
|
||
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
|
||
model = model.to(torch_device)
|
||
|
||
pipe = pipeline(
|
||
"automatic-speech-recognition",
|
||
model=model,
|
||
tokenizer=processor.tokenizer,
|
||
feature_extractor=processor.feature_extractor,
|
||
max_new_tokens=128,
|
||
device=torch_device,
|
||
)
|
||
|
||
ds = load_dataset("distil-whisper/meanwhile", "default")["test"]
|
||
ds = ds.cast_column("audio", Audio(sampling_rate=16000))
|
||
audio = ds[:1]["audio"]
|
||
|
||
result = pipe(audio)[0]["text"]
|
||
|
||
assert result == EXPECTED_RESULT
|
||
|
||
@require_torch
|
||
@slow
|
||
def test_seamless_v2(self):
|
||
pipe = pipeline(
|
||
"automatic-speech-recognition",
|
||
model="facebook/seamless-m4t-v2-large",
|
||
device=torch_device,
|
||
)
|
||
|
||
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
||
sample = dataset[0]["audio"]
|
||
|
||
result = pipe(sample, generate_kwargs={"tgt_lang": "eng"})
|
||
EXPECTED_RESULT = "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel"
|
||
|
||
assert result["text"] == EXPECTED_RESULT
|
||
|
||
@require_torch
|
||
@slow
|
||
def test_chunking_and_timestamps(self):
|
||
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
||
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
||
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model=model,
|
||
tokenizer=tokenizer,
|
||
feature_extractor=feature_extractor,
|
||
framework="pt",
|
||
chunk_length_s=10.0,
|
||
)
|
||
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
audio = ds[40]["audio"]["array"]
|
||
|
||
n_repeats = 10
|
||
audio_tiled = np.tile(audio, n_repeats)
|
||
output = speech_recognizer([audio_tiled], batch_size=2)
|
||
self.assertEqual(output, [{"text": ("A MAN SAID TO THE UNIVERSE SIR I EXIST " * n_repeats).strip()}])
|
||
|
||
output = speech_recognizer(audio, return_timestamps="char")
|
||
self.assertEqual(audio.shape, (74_400,))
|
||
self.assertEqual(speech_recognizer.feature_extractor.sampling_rate, 16_000)
|
||
# The audio is 74_400 / 16_000 = 4.65s long.
|
||
self.assertEqual(
|
||
output,
|
||
{
|
||
"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
|
||
"chunks": [
|
||
{"text": "A", "timestamp": (0.6, 0.62)},
|
||
{"text": " ", "timestamp": (0.62, 0.66)},
|
||
{"text": "M", "timestamp": (0.68, 0.7)},
|
||
{"text": "A", "timestamp": (0.78, 0.8)},
|
||
{"text": "N", "timestamp": (0.84, 0.86)},
|
||
{"text": " ", "timestamp": (0.92, 0.98)},
|
||
{"text": "S", "timestamp": (1.06, 1.08)},
|
||
{"text": "A", "timestamp": (1.14, 1.16)},
|
||
{"text": "I", "timestamp": (1.16, 1.18)},
|
||
{"text": "D", "timestamp": (1.2, 1.24)},
|
||
{"text": " ", "timestamp": (1.24, 1.28)},
|
||
{"text": "T", "timestamp": (1.28, 1.32)},
|
||
{"text": "O", "timestamp": (1.34, 1.36)},
|
||
{"text": " ", "timestamp": (1.38, 1.42)},
|
||
{"text": "T", "timestamp": (1.42, 1.44)},
|
||
{"text": "H", "timestamp": (1.44, 1.46)},
|
||
{"text": "E", "timestamp": (1.46, 1.5)},
|
||
{"text": " ", "timestamp": (1.5, 1.56)},
|
||
{"text": "U", "timestamp": (1.58, 1.62)},
|
||
{"text": "N", "timestamp": (1.64, 1.68)},
|
||
{"text": "I", "timestamp": (1.7, 1.72)},
|
||
{"text": "V", "timestamp": (1.76, 1.78)},
|
||
{"text": "E", "timestamp": (1.84, 1.86)},
|
||
{"text": "R", "timestamp": (1.86, 1.9)},
|
||
{"text": "S", "timestamp": (1.96, 1.98)},
|
||
{"text": "E", "timestamp": (1.98, 2.02)},
|
||
{"text": " ", "timestamp": (2.02, 2.06)},
|
||
{"text": "S", "timestamp": (2.82, 2.86)},
|
||
{"text": "I", "timestamp": (2.94, 2.96)},
|
||
{"text": "R", "timestamp": (2.98, 3.02)},
|
||
{"text": " ", "timestamp": (3.06, 3.12)},
|
||
{"text": "I", "timestamp": (3.5, 3.52)},
|
||
{"text": " ", "timestamp": (3.58, 3.6)},
|
||
{"text": "E", "timestamp": (3.66, 3.68)},
|
||
{"text": "X", "timestamp": (3.68, 3.7)},
|
||
{"text": "I", "timestamp": (3.9, 3.92)},
|
||
{"text": "S", "timestamp": (3.94, 3.96)},
|
||
{"text": "T", "timestamp": (4.0, 4.02)},
|
||
{"text": " ", "timestamp": (4.06, 4.1)},
|
||
],
|
||
},
|
||
)
|
||
output = speech_recognizer(audio, return_timestamps="word")
|
||
self.assertEqual(
|
||
output,
|
||
{
|
||
"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
|
||
"chunks": [
|
||
{"text": "A", "timestamp": (0.6, 0.62)},
|
||
{"text": "MAN", "timestamp": (0.68, 0.86)},
|
||
{"text": "SAID", "timestamp": (1.06, 1.24)},
|
||
{"text": "TO", "timestamp": (1.28, 1.36)},
|
||
{"text": "THE", "timestamp": (1.42, 1.5)},
|
||
{"text": "UNIVERSE", "timestamp": (1.58, 2.02)},
|
||
{"text": "SIR", "timestamp": (2.82, 3.02)},
|
||
{"text": "I", "timestamp": (3.5, 3.52)},
|
||
{"text": "EXIST", "timestamp": (3.66, 4.02)},
|
||
],
|
||
},
|
||
)
|
||
output = speech_recognizer(audio, return_timestamps="word", chunk_length_s=2.0)
|
||
self.assertEqual(
|
||
output,
|
||
{
|
||
"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
|
||
"chunks": [
|
||
{"text": "A", "timestamp": (0.6, 0.62)},
|
||
{"text": "MAN", "timestamp": (0.68, 0.86)},
|
||
{"text": "SAID", "timestamp": (1.06, 1.24)},
|
||
{"text": "TO", "timestamp": (1.3, 1.36)},
|
||
{"text": "THE", "timestamp": (1.42, 1.48)},
|
||
{"text": "UNIVERSE", "timestamp": (1.58, 2.02)},
|
||
# Tiny change linked to chunking.
|
||
{"text": "SIR", "timestamp": (2.84, 3.02)},
|
||
{"text": "I", "timestamp": (3.5, 3.52)},
|
||
{"text": "EXIST", "timestamp": (3.66, 4.02)},
|
||
],
|
||
},
|
||
)
|
||
# CTC models must specify return_timestamps type - cannot set `return_timestamps=True` blindly
|
||
with self.assertRaisesRegex(
|
||
ValueError,
|
||
"^CTC can either predict character level timestamps, or word level timestamps. "
|
||
"Set `return_timestamps='char'` or `return_timestamps='word'` as required.$",
|
||
):
|
||
_ = speech_recognizer(audio, return_timestamps=True)
|
||
|
||
@require_torch
|
||
@slow
|
||
def test_chunking_with_lm(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="patrickvonplaten/wav2vec2-base-100h-with-lm",
|
||
chunk_length_s=10.0,
|
||
)
|
||
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
||
audio = ds[40]["audio"]["array"]
|
||
|
||
n_repeats = 10
|
||
audio = np.tile(audio, n_repeats)
|
||
output = speech_recognizer([audio], batch_size=2)
|
||
expected_text = "A MAN SAID TO THE UNIVERSE SIR I EXIST " * n_repeats
|
||
expected = [{"text": expected_text.strip()}]
|
||
self.assertEqual(output, expected)
|
||
|
||
@require_torch
|
||
def test_chunk_iterator(self):
|
||
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
|
||
inputs = torch.arange(100).long()
|
||
outs = list(chunk_iter(inputs, feature_extractor, 100, 0, 0))
|
||
|
||
self.assertEqual(len(outs), 1)
|
||
self.assertEqual([o["stride"] for o in outs], [(100, 0, 0)])
|
||
self.assertEqual([o["input_values"].shape for o in outs], [(1, 100)])
|
||
self.assertEqual([o["is_last"] for o in outs], [True])
|
||
|
||
# two chunks no stride
|
||
outs = list(chunk_iter(inputs, feature_extractor, 50, 0, 0))
|
||
self.assertEqual(len(outs), 2)
|
||
self.assertEqual([o["stride"] for o in outs], [(50, 0, 0), (50, 0, 0)])
|
||
self.assertEqual([o["input_values"].shape for o in outs], [(1, 50), (1, 50)])
|
||
self.assertEqual([o["is_last"] for o in outs], [False, True])
|
||
|
||
# two chunks incomplete last
|
||
outs = list(chunk_iter(inputs, feature_extractor, 80, 0, 0))
|
||
self.assertEqual(len(outs), 2)
|
||
self.assertEqual([o["stride"] for o in outs], [(80, 0, 0), (20, 0, 0)])
|
||
self.assertEqual([o["input_values"].shape for o in outs], [(1, 80), (1, 20)])
|
||
self.assertEqual([o["is_last"] for o in outs], [False, True])
|
||
|
||
# one chunk since first is also last, because it contains only data
|
||
# in the right strided part we just mark that part as non stride
|
||
# This test is specifically crafted to trigger a bug if next chunk
|
||
# would be ignored by the fact that all the data would be
|
||
# contained in the strided left data.
|
||
outs = list(chunk_iter(inputs, feature_extractor, 105, 5, 5))
|
||
self.assertEqual(len(outs), 1)
|
||
self.assertEqual([o["stride"] for o in outs], [(100, 0, 0)])
|
||
self.assertEqual([o["input_values"].shape for o in outs], [(1, 100)])
|
||
self.assertEqual([o["is_last"] for o in outs], [True])
|
||
|
||
@require_torch
|
||
def test_chunk_iterator_stride(self):
|
||
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
|
||
inputs = torch.arange(100).long()
|
||
input_values = feature_extractor(inputs, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")[
|
||
"input_values"
|
||
]
|
||
outs = list(chunk_iter(inputs, feature_extractor, 100, 20, 10))
|
||
self.assertEqual(len(outs), 2)
|
||
self.assertEqual([o["stride"] for o in outs], [(100, 0, 10), (30, 20, 0)])
|
||
self.assertEqual([o["input_values"].shape for o in outs], [(1, 100), (1, 30)])
|
||
self.assertEqual([o["is_last"] for o in outs], [False, True])
|
||
|
||
outs = list(chunk_iter(inputs, feature_extractor, 80, 20, 10))
|
||
self.assertEqual(len(outs), 2)
|
||
self.assertEqual([o["stride"] for o in outs], [(80, 0, 10), (50, 20, 0)])
|
||
self.assertEqual([o["input_values"].shape for o in outs], [(1, 80), (1, 50)])
|
||
self.assertEqual([o["is_last"] for o in outs], [False, True])
|
||
|
||
outs = list(chunk_iter(inputs, feature_extractor, 90, 20, 0))
|
||
self.assertEqual(len(outs), 2)
|
||
self.assertEqual([o["stride"] for o in outs], [(90, 0, 0), (30, 20, 0)])
|
||
self.assertEqual([o["input_values"].shape for o in outs], [(1, 90), (1, 30)])
|
||
|
||
outs = list(chunk_iter(inputs, feature_extractor, 36, 6, 6))
|
||
self.assertEqual(len(outs), 4)
|
||
self.assertEqual([o["stride"] for o in outs], [(36, 0, 6), (36, 6, 6), (36, 6, 6), (28, 6, 0)])
|
||
self.assertEqual([o["input_values"].shape for o in outs], [(1, 36), (1, 36), (1, 36), (1, 28)])
|
||
|
||
inputs = torch.LongTensor([i % 2 for i in range(100)])
|
||
input_values = feature_extractor(inputs, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")[
|
||
"input_values"
|
||
]
|
||
outs = list(chunk_iter(inputs, feature_extractor, 30, 5, 5))
|
||
self.assertEqual(len(outs), 5)
|
||
self.assertEqual([o["stride"] for o in outs], [(30, 0, 5), (30, 5, 5), (30, 5, 5), (30, 5, 5), (20, 5, 0)])
|
||
self.assertEqual([o["input_values"].shape for o in outs], [(1, 30), (1, 30), (1, 30), (1, 30), (1, 20)])
|
||
self.assertEqual([o["is_last"] for o in outs], [False, False, False, False, True])
|
||
# (0, 25)
|
||
self.assertEqual(nested_simplify(input_values[:, :30]), nested_simplify(outs[0]["input_values"]))
|
||
# (25, 45)
|
||
self.assertEqual(nested_simplify(input_values[:, 20:50]), nested_simplify(outs[1]["input_values"]))
|
||
# (45, 65)
|
||
self.assertEqual(nested_simplify(input_values[:, 40:70]), nested_simplify(outs[2]["input_values"]))
|
||
# (65, 85)
|
||
self.assertEqual(nested_simplify(input_values[:, 60:90]), nested_simplify(outs[3]["input_values"]))
|
||
# (85, 100)
|
||
self.assertEqual(nested_simplify(input_values[:, 80:100]), nested_simplify(outs[4]["input_values"]))
|
||
|
||
@require_torch
|
||
def test_stride(self):
|
||
speech_recognizer = pipeline(
|
||
task="automatic-speech-recognition",
|
||
model="hf-internal-testing/tiny-random-wav2vec2",
|
||
)
|
||
waveform = np.tile(np.arange(1000, dtype=np.float32), 10)
|
||
output = speech_recognizer({"raw": waveform, "stride": (0, 0), "sampling_rate": 16_000})
|
||
self.assertEqual(output, {"text": "OB XB B EB BB B EB B OB X"})
|
||
|
||
# 0 effective ids Just take the middle one
|
||
output = speech_recognizer({"raw": waveform, "stride": (5000, 5000), "sampling_rate": 16_000})
|
||
self.assertEqual(output, {"text": ""})
|
||
|
||
# Only 1 arange.
|
||
output = speech_recognizer({"raw": waveform, "stride": (0, 9000), "sampling_rate": 16_000})
|
||
self.assertEqual(output, {"text": "OB"})
|
||
|
||
# 2nd arange
|
||
output = speech_recognizer({"raw": waveform, "stride": (1000, 8000), "sampling_rate": 16_000})
|
||
self.assertEqual(output, {"text": "XB"})
|
||
|
||
@slow
|
||
@require_torch_accelerator
|
||
def test_slow_unfinished_sequence(self):
|
||
from transformers import GenerationConfig
|
||
|
||
pipe = pipeline(
|
||
"automatic-speech-recognition",
|
||
model="vasista22/whisper-hindi-large-v2",
|
||
device=torch_device,
|
||
)
|
||
# Original model wasn't trained with timestamps and has incorrect generation config
|
||
pipe.model.generation_config = GenerationConfig.from_pretrained("openai/whisper-large-v2")
|
||
|
||
# the audio is 4 seconds long
|
||
audio = hf_hub_download("Narsil/asr_dummy", filename="hindi.ogg", repo_type="dataset")
|
||
|
||
out = pipe(
|
||
audio,
|
||
return_timestamps=True,
|
||
)
|
||
self.assertEqual(
|
||
out,
|
||
{
|
||
"text": "मिर्ची में कितने विभिन्न प्रजातियां हैं",
|
||
"chunks": [{"timestamp": (0.58, None), "text": "मिर्ची में कितने विभिन्न प्रजातियां हैं"}],
|
||
},
|
||
)
|
||
|
||
|
||
def require_ffmpeg(test_case):
|
||
"""
|
||
Decorator marking a test that requires FFmpeg.
|
||
|
||
These tests are skipped when FFmpeg isn't installed.
|
||
|
||
"""
|
||
import subprocess
|
||
|
||
try:
|
||
subprocess.check_output(["ffmpeg", "-h"], stderr=subprocess.DEVNULL)
|
||
return test_case
|
||
except Exception:
|
||
return unittest.skip("test requires ffmpeg")(test_case)
|
||
|
||
|
||
def bytes_iter(chunk_size, chunks):
|
||
for i in range(chunks):
|
||
yield bytes(range(i * chunk_size, (i + 1) * chunk_size))
|
||
|
||
|
||
@require_ffmpeg
|
||
class AudioUtilsTest(unittest.TestCase):
|
||
def test_chunk_bytes_iter_too_big(self):
|
||
iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 10, stride=(0, 0)))
|
||
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05", "stride": (0, 0)})
|
||
with self.assertRaises(StopIteration):
|
||
next(iter_)
|
||
|
||
def test_chunk_bytes_iter(self):
|
||
iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 3, stride=(0, 0)))
|
||
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0)})
|
||
self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (0, 0)})
|
||
with self.assertRaises(StopIteration):
|
||
next(iter_)
|
||
|
||
def test_chunk_bytes_iter_stride(self):
|
||
iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 3, stride=(1, 1)))
|
||
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 1)})
|
||
self.assertEqual(next(iter_), {"raw": b"\x01\x02\x03", "stride": (1, 1)})
|
||
self.assertEqual(next(iter_), {"raw": b"\x02\x03\x04", "stride": (1, 1)})
|
||
# This is finished, but the chunk_bytes doesn't know it yet.
|
||
self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (1, 1)})
|
||
self.assertEqual(next(iter_), {"raw": b"\x04\x05", "stride": (1, 0)})
|
||
with self.assertRaises(StopIteration):
|
||
next(iter_)
|
||
|
||
def test_chunk_bytes_iter_stride_stream(self):
|
||
iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 5, stride=(1, 1), stream=True))
|
||
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
|
||
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04", "stride": (0, 1), "partial": False})
|
||
self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (1, 0), "partial": False})
|
||
with self.assertRaises(StopIteration):
|
||
next(iter_)
|
||
|
||
iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=3), 5, stride=(1, 1), stream=True))
|
||
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
|
||
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04", "stride": (0, 1), "partial": False})
|
||
self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05\x06\x07", "stride": (1, 1), "partial": False})
|
||
self.assertEqual(next(iter_), {"raw": b"\x06\x07\x08", "stride": (1, 0), "partial": False})
|
||
with self.assertRaises(StopIteration):
|
||
next(iter_)
|
||
|
||
iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=3), 10, stride=(1, 1), stream=True))
|
||
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
|
||
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05", "stride": (0, 0), "partial": True})
|
||
self.assertEqual(
|
||
next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05\x06\x07\x08", "stride": (0, 0), "partial": True}
|
||
)
|
||
self.assertEqual(
|
||
next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05\x06\x07\x08", "stride": (0, 0), "partial": False}
|
||
)
|
||
with self.assertRaises(StopIteration):
|
||
next(iter_)
|