162 lines
5.5 KiB
Python
162 lines
5.5 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
import uuid
|
|
|
|
import pytest
|
|
|
|
from transformers.agents.agent_types import AgentText
|
|
from transformers.agents.agents import AgentMaxIterationsError, CodeAgent, ReactCodeAgent, ReactJsonAgent, Toolbox
|
|
from transformers.agents.default_tools import PythonInterpreterTool
|
|
from transformers.testing_utils import require_torch
|
|
|
|
|
|
def get_new_path(suffix="") -> str:
|
|
directory = tempfile.mkdtemp()
|
|
return os.path.join(directory, str(uuid.uuid4()) + suffix)
|
|
|
|
|
|
def fake_react_json_llm(messages, stop_sequences=None) -> str:
|
|
prompt = str(messages)
|
|
|
|
if "special_marker" not in prompt:
|
|
return """
|
|
Thought: I should multiply 2 by 3.6452. special_marker
|
|
Action:
|
|
{
|
|
"action": "python_interpreter",
|
|
"action_input": {"code": "2*3.6452"}
|
|
}
|
|
"""
|
|
else: # We're at step 2
|
|
return """
|
|
Thought: I can now answer the initial question
|
|
Action:
|
|
{
|
|
"action": "final_answer",
|
|
"action_input": {"answer": "7.2904"}
|
|
}
|
|
"""
|
|
|
|
|
|
def fake_react_code_llm(messages, stop_sequences=None) -> str:
|
|
prompt = str(messages)
|
|
if "special_marker" not in prompt:
|
|
return """
|
|
Thought: I should multiply 2 by 3.6452. special_marker
|
|
Code:
|
|
```py
|
|
result = 2**3.6452
|
|
print(result)
|
|
```<end_code>
|
|
"""
|
|
else: # We're at step 2
|
|
return """
|
|
Thought: I can now answer the initial question
|
|
Code:
|
|
```py
|
|
final_answer(7.2904)
|
|
```<end_code>
|
|
"""
|
|
|
|
|
|
def fake_code_llm_oneshot(messages, stop_sequences=None) -> str:
|
|
return """
|
|
Thought: I should multiply 2 by 3.6452. special_marker
|
|
Code:
|
|
```py
|
|
result = python_interpreter(code="2*3.6452")
|
|
print(result)
|
|
```
|
|
"""
|
|
|
|
|
|
class AgentTests(unittest.TestCase):
|
|
def test_fake_code_agent(self):
|
|
agent = CodeAgent(tools=[PythonInterpreterTool()], llm_engine=fake_code_llm_oneshot)
|
|
output = agent.run("What is 2 multiplied by 3.6452?")
|
|
assert isinstance(output, str)
|
|
assert output == "7.2904"
|
|
|
|
def test_fake_react_json_agent(self):
|
|
agent = ReactJsonAgent(tools=[PythonInterpreterTool()], llm_engine=fake_react_json_llm)
|
|
output = agent.run("What is 2 multiplied by 3.6452?")
|
|
assert isinstance(output, str)
|
|
assert output == "7.2904"
|
|
assert agent.logs[0]["task"] == "What is 2 multiplied by 3.6452?"
|
|
assert agent.logs[1]["observation"] == "7.2904"
|
|
assert agent.logs[1]["rationale"].strip() == "Thought: I should multiply 2 by 3.6452. special_marker"
|
|
assert (
|
|
agent.logs[2]["llm_output"]
|
|
== """
|
|
Thought: I can now answer the initial question
|
|
Action:
|
|
{
|
|
"action": "final_answer",
|
|
"action_input": {"answer": "7.2904"}
|
|
}
|
|
"""
|
|
)
|
|
|
|
def test_fake_react_code_agent(self):
|
|
agent = ReactCodeAgent(tools=[PythonInterpreterTool()], llm_engine=fake_react_code_llm)
|
|
output = agent.run("What is 2 multiplied by 3.6452?")
|
|
assert isinstance(output, AgentText)
|
|
assert output == "7.2904"
|
|
assert agent.logs[0]["task"] == "What is 2 multiplied by 3.6452?"
|
|
assert float(agent.logs[1]["observation"].strip()) - 12.511648 < 1e-6
|
|
assert agent.logs[2]["tool_call"] == {
|
|
"tool_arguments": "final_answer(7.2904)",
|
|
"tool_name": "code interpreter",
|
|
}
|
|
|
|
def test_setup_agent_with_empty_toolbox(self):
|
|
ReactJsonAgent(llm_engine=fake_react_json_llm, tools=[])
|
|
|
|
def test_react_fails_max_iterations(self):
|
|
agent = ReactCodeAgent(
|
|
tools=[PythonInterpreterTool()],
|
|
llm_engine=fake_code_llm_oneshot, # use this callable because it never ends
|
|
max_iterations=5,
|
|
)
|
|
agent.run("What is 2 multiplied by 3.6452?")
|
|
assert len(agent.logs) == 7
|
|
assert type(agent.logs[-1]["error"]) == AgentMaxIterationsError
|
|
|
|
@require_torch
|
|
def test_init_agent_with_different_toolsets(self):
|
|
toolset_1 = []
|
|
agent = ReactCodeAgent(tools=toolset_1, llm_engine=fake_react_code_llm)
|
|
assert len(agent.toolbox.tools) == 1 # contains only final_answer tool
|
|
|
|
toolset_2 = [PythonInterpreterTool(), PythonInterpreterTool()]
|
|
agent = ReactCodeAgent(tools=toolset_2, llm_engine=fake_react_code_llm)
|
|
assert len(agent.toolbox.tools) == 2 # added final_answer tool
|
|
|
|
toolset_3 = Toolbox(toolset_2)
|
|
agent = ReactCodeAgent(tools=toolset_3, llm_engine=fake_react_code_llm)
|
|
assert len(agent.toolbox.tools) == 2 # added final_answer tool
|
|
|
|
# check that add_base_tools will not interfere with existing tools
|
|
with pytest.raises(KeyError) as e:
|
|
agent = ReactJsonAgent(tools=toolset_3, llm_engine=fake_react_json_llm, add_base_tools=True)
|
|
assert "python_interpreter already exists in the toolbox" in str(e)
|
|
|
|
# check that python_interpreter base tool does not get added to code agents
|
|
agent = ReactCodeAgent(tools=[], llm_engine=fake_react_code_llm, add_base_tools=True)
|
|
assert len(agent.toolbox.tools) == 6 # added final_answer tool + 5 base tools (excluding interpreter)
|