689 lines
28 KiB
Python
689 lines
28 KiB
Python
import functools
|
|
import math
|
|
import os # noqa: F401
|
|
from random import choice, randint
|
|
from time import time
|
|
|
|
import datasets # noqa: F401
|
|
import faiss # noqa: F401
|
|
import numpy as np
|
|
import pandas as pd
|
|
import torch
|
|
import torch.utils.checkpoint as checkpoint
|
|
from elasticsearch import Elasticsearch # noqa: F401
|
|
from elasticsearch.helpers import bulk, streaming_bulk # noqa: F401
|
|
from torch import nn
|
|
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
|
|
from tqdm import tqdm
|
|
|
|
from transformers import AdamW, AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer, get_linear_schedule_with_warmup
|
|
|
|
|
|
pd.set_option("display.max_colwidth", None)
|
|
|
|
|
|
###############
|
|
# Sparse index
|
|
###############
|
|
def make_es_index_snippets(es_client, passages_dset, index_name="english_wiki_kilt_snippets_100w"):
|
|
index_config = {
|
|
"settings": {
|
|
"number_of_shards": 1,
|
|
"analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}},
|
|
},
|
|
"mappings": {
|
|
"properties": {
|
|
"article_title": {"type": "text", "analyzer": "standard", "similarity": "BM25"},
|
|
"section_title": {"type": "text", "analyzer": "standard", "similarity": "BM25"},
|
|
"passage_text": {"type": "text", "analyzer": "standard", "similarity": "BM25"},
|
|
}
|
|
},
|
|
}
|
|
es_client.indices.create(index=index_name, body=index_config)
|
|
number_of_docs = passages_dset.num_rows
|
|
progress = tqdm(unit="docs", total=number_of_docs)
|
|
successes = 0
|
|
|
|
def passage_generator():
|
|
for passage in passages_dset:
|
|
yield passage
|
|
|
|
# create the ES index
|
|
for ok, action in streaming_bulk(
|
|
client=es_client,
|
|
index=index_name,
|
|
actions=passage_generator(),
|
|
):
|
|
progress.update(1)
|
|
successes += ok
|
|
print("Indexed %d documents" % (successes,))
|
|
|
|
|
|
def query_es_index(question, es_client, index_name="english_wiki_kilt_snippets_100w", n_results=10, min_length=20):
|
|
q = question.lower()
|
|
banned = ["how", "why", "what", "where", "which", "do", "does", "is", "?", "eli5", "eli5:"]
|
|
q = " ".join([w for w in q.split() if w not in banned])
|
|
response = es_client.search(
|
|
index=index_name,
|
|
body={
|
|
"query": {
|
|
"multi_match": {
|
|
"query": q,
|
|
"fields": ["article_title", "section_title", "passage_text^2"],
|
|
"type": "cross_fields",
|
|
}
|
|
},
|
|
"size": 2 * n_results,
|
|
},
|
|
)
|
|
hits = response["hits"]["hits"]
|
|
support_doc = "<P> " + " <P> ".join([hit["_source"]["passage_text"] for hit in hits])
|
|
res_list = [{k: hit["_source"][k] for k in hit["_source"] if k != "passage_text"} for hit in hits]
|
|
for r, hit in zip(res_list, hits):
|
|
r["passage_id"] = hit["_id"]
|
|
r["score"] = hit["_score"]
|
|
r["passage_text"] = hit["_source"]["passage_text"]
|
|
res_list = [res for res in res_list if len(res["passage_text"].split()) > min_length][:n_results]
|
|
return support_doc, res_list
|
|
|
|
|
|
###############
|
|
# ELI5 retriever training
|
|
###############
|
|
class ELI5DatasetQARetriver(Dataset):
|
|
def __init__(self, examples_array, extra_answer_threshold=3, min_answer_length=64, training=True, n_samples=None):
|
|
self.data = examples_array
|
|
self.answer_thres = extra_answer_threshold
|
|
self.min_length = min_answer_length
|
|
self.training = training
|
|
self.n_samples = self.data.num_rows if n_samples is None else n_samples
|
|
|
|
def __len__(self):
|
|
return self.n_samples
|
|
|
|
def make_example(self, idx):
|
|
example = self.data[idx]
|
|
question = example["title"]
|
|
if self.training:
|
|
answers = [a for i, (a, sc) in enumerate(zip(example["answers"]["text"], example["answers"]["score"]))]
|
|
answer_tab = choice(answers).split(" ")
|
|
start_idx = randint(0, max(0, len(answer_tab) - self.min_length))
|
|
answer_span = " ".join(answer_tab[start_idx:])
|
|
else:
|
|
answer_span = example["answers"]["text"][0]
|
|
return (question, answer_span)
|
|
|
|
def __getitem__(self, idx):
|
|
return self.make_example(idx % self.data.num_rows)
|
|
|
|
|
|
class RetrievalQAEmbedder(nn.Module):
|
|
def __init__(self, sent_encoder, dim):
|
|
super(RetrievalQAEmbedder, self).__init__()
|
|
self.sent_encoder = sent_encoder
|
|
self.output_dim = 128
|
|
self.project_q = nn.Linear(dim, self.output_dim, bias=False)
|
|
self.project_a = nn.Linear(dim, self.output_dim, bias=False)
|
|
self.ce_loss = nn.CrossEntropyLoss(reduction="mean")
|
|
|
|
def embed_sentences_checkpointed(self, input_ids, attention_mask, checkpoint_batch_size=-1):
|
|
# reproduces BERT forward pass with checkpointing
|
|
if checkpoint_batch_size < 0 or input_ids.shape[0] < checkpoint_batch_size:
|
|
return self.sent_encoder(input_ids, attention_mask=attention_mask)[1]
|
|
else:
|
|
# prepare implicit variables
|
|
device = input_ids.device
|
|
input_shape = input_ids.size()
|
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
|
head_mask = [None] * self.sent_encoder.config.num_hidden_layers
|
|
extended_attention_mask: torch.Tensor = self.sent_encoder.get_extended_attention_mask(
|
|
attention_mask, input_shape
|
|
)
|
|
|
|
# define function for checkpointing
|
|
def partial_encode(*inputs):
|
|
encoder_outputs = self.sent_encoder.encoder(
|
|
inputs[0],
|
|
attention_mask=inputs[1],
|
|
head_mask=head_mask,
|
|
)
|
|
sequence_output = encoder_outputs[0]
|
|
pooled_output = self.sent_encoder.pooler(sequence_output)
|
|
return pooled_output
|
|
|
|
# run embedding layer on everything at once
|
|
embedding_output = self.sent_encoder.embeddings(
|
|
input_ids=input_ids, position_ids=None, token_type_ids=token_type_ids, inputs_embeds=None
|
|
)
|
|
# run encoding and pooling on one mini-batch at a time
|
|
pooled_output_list = []
|
|
for b in range(math.ceil(input_ids.shape[0] / checkpoint_batch_size)):
|
|
b_embedding_output = embedding_output[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size]
|
|
b_attention_mask = extended_attention_mask[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size]
|
|
pooled_output = checkpoint.checkpoint(partial_encode, b_embedding_output, b_attention_mask)
|
|
pooled_output_list.append(pooled_output)
|
|
return torch.cat(pooled_output_list, dim=0)
|
|
|
|
def embed_questions(self, q_ids, q_mask, checkpoint_batch_size=-1):
|
|
q_reps = self.embed_sentences_checkpointed(q_ids, q_mask, checkpoint_batch_size)
|
|
return self.project_q(q_reps)
|
|
|
|
def embed_answers(self, a_ids, a_mask, checkpoint_batch_size=-1):
|
|
a_reps = self.embed_sentences_checkpointed(a_ids, a_mask, checkpoint_batch_size)
|
|
return self.project_a(a_reps)
|
|
|
|
def forward(self, q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=-1):
|
|
device = q_ids.device
|
|
q_reps = self.embed_questions(q_ids, q_mask, checkpoint_batch_size)
|
|
a_reps = self.embed_answers(a_ids, a_mask, checkpoint_batch_size)
|
|
compare_scores = torch.mm(q_reps, a_reps.t())
|
|
loss_qa = self.ce_loss(compare_scores, torch.arange(compare_scores.shape[1]).to(device))
|
|
loss_aq = self.ce_loss(compare_scores.t(), torch.arange(compare_scores.shape[0]).to(device))
|
|
loss = (loss_qa + loss_aq) / 2
|
|
return loss
|
|
|
|
|
|
def make_qa_retriever_model(model_name="google/bert_uncased_L-8_H-512_A-8", from_file=None, device="cuda:0"):
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
bert_model = AutoModel.from_pretrained(model_name).to(device)
|
|
# run bert_model on a dummy batch to get output dimension
|
|
d_ids = torch.LongTensor(
|
|
[[bert_model.config.bos_token_id if bert_model.config.bos_token_id is not None else 1]]
|
|
).to(device)
|
|
d_mask = torch.LongTensor([[1]]).to(device)
|
|
sent_dim = bert_model(d_ids, attention_mask=d_mask)[1].shape[-1]
|
|
qa_embedder = RetrievalQAEmbedder(bert_model, sent_dim).to(device)
|
|
if from_file is not None:
|
|
param_dict = torch.load(from_file) # has model weights, optimizer, and scheduler states
|
|
qa_embedder.load_state_dict(param_dict["model"])
|
|
return tokenizer, qa_embedder
|
|
|
|
|
|
def make_qa_retriever_batch(qa_list, tokenizer, max_len=64, device="cuda:0"):
|
|
q_ls = [q for q, a in qa_list]
|
|
a_ls = [a for q, a in qa_list]
|
|
q_toks = tokenizer(q_ls, max_length=max_len, padding="max_length", truncation=True)
|
|
q_ids, q_mask = (
|
|
torch.LongTensor(q_toks["input_ids"]).to(device),
|
|
torch.LongTensor(q_toks["attention_mask"]).to(device),
|
|
)
|
|
a_toks = tokenizer(a_ls, max_length=max_len, padding="max_length", truncation=True)
|
|
a_ids, a_mask = (
|
|
torch.LongTensor(a_toks["input_ids"]).to(device),
|
|
torch.LongTensor(a_toks["attention_mask"]).to(device),
|
|
)
|
|
return (q_ids, q_mask, a_ids, a_mask)
|
|
|
|
|
|
def train_qa_retriever_epoch(model, dataset, tokenizer, optimizer, scheduler, args, e=0):
|
|
model.train()
|
|
# make iterator
|
|
train_sampler = RandomSampler(dataset)
|
|
model_collate_fn = functools.partial(
|
|
make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0"
|
|
)
|
|
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn)
|
|
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True)
|
|
# accumulate loss since last print
|
|
loc_steps = 0
|
|
loc_loss = 0.0
|
|
st_time = time()
|
|
for step, batch in enumerate(epoch_iterator):
|
|
q_ids, q_mask, a_ids, a_mask = batch
|
|
pre_loss = model(q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=args.checkpoint_batch_size)
|
|
loss = pre_loss.sum()
|
|
# optimizer
|
|
loss.backward()
|
|
optimizer.step()
|
|
scheduler.step()
|
|
model.zero_grad()
|
|
# some printing within the epoch
|
|
loc_loss += loss.item()
|
|
loc_steps += 1
|
|
if step % args.print_freq == 0 or step == 1:
|
|
print(
|
|
"{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format(
|
|
e,
|
|
step,
|
|
len(dataset) // args.batch_size,
|
|
loc_loss / loc_steps,
|
|
time() - st_time,
|
|
)
|
|
)
|
|
loc_loss = 0
|
|
loc_steps = 0
|
|
|
|
|
|
def train_qa_retriever_joint_epoch(model, dataset_list, tokenizer, optimizer, scheduler, args, e=0):
|
|
model.train()
|
|
model_collate_fn = functools.partial(
|
|
make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0"
|
|
)
|
|
# make iterator
|
|
train_samplers = [RandomSampler(dataset) for dataset in dataset_list]
|
|
data_loaders = [
|
|
DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn)
|
|
for dataset, train_sampler in zip(dataset_list, train_samplers)
|
|
]
|
|
iterators = [iter(dloader) for dloader in data_loaders]
|
|
joint_iter = zip(*iterators)
|
|
# accumulate loss since last print
|
|
loc_steps = 0
|
|
loc_loss = 0.0
|
|
st_time = time()
|
|
for step, (batches,) in enumerate(zip(joint_iter)):
|
|
for batch in batches:
|
|
q_ids, q_mask, a_ids, a_mask = batch
|
|
loss = model(q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=args.checkpoint_batch_size)
|
|
# optimizer
|
|
loss.backward()
|
|
optimizer.step()
|
|
scheduler.step()
|
|
model.zero_grad()
|
|
# some printing within the epoch
|
|
loc_loss += loss.item()
|
|
loc_steps += 1
|
|
if step % args.print_freq == 0:
|
|
print(
|
|
"{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format(
|
|
e,
|
|
step,
|
|
len(dataset_list[0]) // args.batch_size,
|
|
loc_loss / loc_steps,
|
|
time() - st_time,
|
|
)
|
|
)
|
|
loc_loss = 0
|
|
loc_steps = 0
|
|
|
|
|
|
def evaluate_qa_retriever(model, dataset, tokenizer, args):
|
|
model.eval()
|
|
# make iterator
|
|
eval_sampler = SequentialSampler(dataset)
|
|
model_collate_fn = functools.partial(
|
|
make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0"
|
|
)
|
|
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=eval_sampler, collate_fn=model_collate_fn)
|
|
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True)
|
|
tot_loss = 0.0
|
|
with torch.no_grad():
|
|
for step, batch in enumerate(epoch_iterator):
|
|
q_ids, q_mask, a_ids, a_mask = batch
|
|
loss = model(q_ids, q_mask, a_ids, a_mask)
|
|
tot_loss += loss.item()
|
|
return tot_loss / (step + 1)
|
|
|
|
|
|
def train_qa_retriever(qar_model, qar_tokenizer, qar_train_dset, qar_valid_dset, qar_args):
|
|
qar_optimizer = AdamW(qar_model.parameters(), lr=qar_args.learning_rate, eps=1e-8)
|
|
qar_scheduler = get_linear_schedule_with_warmup(
|
|
qar_optimizer,
|
|
num_warmup_steps=100,
|
|
num_training_steps=(qar_args.num_epochs + 1) * math.ceil(len(qar_train_dset) / qar_args.batch_size),
|
|
)
|
|
for e in range(qar_args.num_epochs):
|
|
train_qa_retriever_epoch(qar_model, qar_train_dset, qar_tokenizer, qar_optimizer, qar_scheduler, qar_args, e)
|
|
m_save_dict = {
|
|
"model": qar_model.state_dict(),
|
|
"optimizer": qar_optimizer.state_dict(),
|
|
"scheduler": qar_scheduler.state_dict(),
|
|
}
|
|
print("Saving model {}".format(qar_args.model_save_name))
|
|
torch.save(m_save_dict, "{}_{}.pth".format(qar_args.model_save_name, e))
|
|
eval_loss = evaluate_qa_retriever(qar_model, qar_valid_dset, qar_tokenizer, qar_args)
|
|
print("Evaluation loss epoch {:4d}: {:.3f}".format(e, eval_loss))
|
|
|
|
|
|
###############
|
|
# ELI5 seq2seq model training
|
|
###############
|
|
class ELI5DatasetS2S(Dataset):
|
|
def __init__(
|
|
self, examples_array, make_doc_fun=None, extra_answer_threshold=3, document_cache=None, training=True
|
|
):
|
|
self.training = training
|
|
self.data = examples_array
|
|
self.make_doc_function = make_doc_fun
|
|
self.document_cache = {} if document_cache is None else document_cache
|
|
assert not (make_doc_fun is None and document_cache is None)
|
|
# make index of specific question-answer pairs from multi-answers
|
|
if self.training:
|
|
self.qa_id_list = [
|
|
(i, j)
|
|
for i, qa in enumerate(self.data)
|
|
for j, (a, sc) in enumerate(zip(qa["answers"]["text"], qa["answers"]["score"]))
|
|
if j == 0 or sc >= extra_answer_threshold
|
|
]
|
|
else:
|
|
self.qa_id_list = [(i, 0) for i in range(self.data.num_rows)]
|
|
|
|
def __len__(self):
|
|
return len(self.qa_id_list)
|
|
|
|
def make_example(self, idx):
|
|
i, j = self.qa_id_list[idx]
|
|
example = self.data[i]
|
|
question = example["title"] + " " + example["selftext"]
|
|
answer = example["answers"]["text"][j]
|
|
q_id = example["q_id"]
|
|
if self.make_doc_function is not None:
|
|
self.document_cache[q_id] = self.document_cache.get(q_id, self.make_doc_function(example["title"]))
|
|
document = self.document_cache[q_id]
|
|
in_st = "question: {} context: {}".format(
|
|
question.lower().replace(" --t--", "").strip(),
|
|
document.lower().strip(),
|
|
)
|
|
out_st = answer
|
|
return (in_st, out_st)
|
|
|
|
def __getitem__(self, idx):
|
|
return self.make_example(idx)
|
|
|
|
|
|
def make_qa_s2s_model(model_name="facebook/bart-large", from_file=None, device="cuda:0"):
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
|
|
if from_file is not None:
|
|
param_dict = torch.load(from_file) # has model weights, optimizer, and scheduler states
|
|
model.load_state_dict(param_dict["model"])
|
|
return tokenizer, model
|
|
|
|
|
|
def make_qa_s2s_batch(qa_list, tokenizer, max_len=64, max_a_len=360, device="cuda:0"):
|
|
q_ls = [q for q, a in qa_list]
|
|
a_ls = [a for q, a in qa_list]
|
|
q_toks = tokenizer(q_ls, max_length=max_len, padding="max_length", truncation=True)
|
|
q_ids, q_mask = (
|
|
torch.LongTensor(q_toks["input_ids"]).to(device),
|
|
torch.LongTensor(q_toks["attention_mask"]).to(device),
|
|
)
|
|
a_toks = tokenizer(a_ls, max_length=min(max_len, max_a_len), padding="max_length", truncation=True)
|
|
a_ids, a_mask = (
|
|
torch.LongTensor(a_toks["input_ids"]).to(device),
|
|
torch.LongTensor(a_toks["attention_mask"]).to(device),
|
|
)
|
|
lm_labels = a_ids[:, 1:].contiguous().clone()
|
|
lm_labels[a_mask[:, 1:].contiguous() == 0] = -100
|
|
model_inputs = {
|
|
"input_ids": q_ids,
|
|
"attention_mask": q_mask,
|
|
"decoder_input_ids": a_ids[:, :-1].contiguous(),
|
|
"lm_labels": lm_labels,
|
|
}
|
|
return model_inputs
|
|
|
|
|
|
def train_qa_s2s_epoch(model, dataset, tokenizer, optimizer, scheduler, args, e=0, curriculum=False):
|
|
model.train()
|
|
# make iterator
|
|
if curriculum:
|
|
train_sampler = SequentialSampler(dataset)
|
|
else:
|
|
train_sampler = RandomSampler(dataset)
|
|
model_collate_fn = functools.partial(
|
|
make_qa_s2s_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0"
|
|
)
|
|
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn)
|
|
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True)
|
|
# accumulate loss since last print
|
|
loc_steps = 0
|
|
loc_loss = 0.0
|
|
st_time = time()
|
|
for step, batch_inputs in enumerate(epoch_iterator):
|
|
pre_loss = model(**batch_inputs)[0]
|
|
loss = pre_loss.sum() / pre_loss.shape[0]
|
|
loss.backward()
|
|
# optimizer
|
|
if step % args.backward_freq == 0:
|
|
optimizer.step()
|
|
scheduler.step()
|
|
model.zero_grad()
|
|
# some printing within the epoch
|
|
loc_loss += loss.item()
|
|
loc_steps += 1
|
|
if step % args.print_freq == 0 or step == 1:
|
|
print(
|
|
"{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format(
|
|
e,
|
|
step,
|
|
len(dataset) // args.batch_size,
|
|
loc_loss / loc_steps,
|
|
time() - st_time,
|
|
)
|
|
)
|
|
loc_loss = 0
|
|
loc_steps = 0
|
|
|
|
|
|
def eval_qa_s2s_epoch(model, dataset, tokenizer, args):
|
|
model.eval()
|
|
# make iterator
|
|
train_sampler = SequentialSampler(dataset)
|
|
model_collate_fn = functools.partial(
|
|
make_qa_s2s_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0"
|
|
)
|
|
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn)
|
|
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True)
|
|
# accumulate loss since last print
|
|
loc_steps = 0
|
|
loc_loss = 0.0
|
|
st_time = time()
|
|
with torch.no_grad():
|
|
for step, batch_inputs in enumerate(epoch_iterator):
|
|
pre_loss = model(**batch_inputs)[0]
|
|
loss = pre_loss.sum() / pre_loss.shape[0]
|
|
loc_loss += loss.item()
|
|
loc_steps += 1
|
|
if step % args.print_freq == 0:
|
|
print(
|
|
"{:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format(
|
|
step,
|
|
len(dataset) // args.batch_size,
|
|
loc_loss / loc_steps,
|
|
time() - st_time,
|
|
)
|
|
)
|
|
print(
|
|
"Total \t L: {:.3f} \t -- {:.3f}".format(
|
|
loc_loss / loc_steps,
|
|
time() - st_time,
|
|
)
|
|
)
|
|
|
|
|
|
def train_qa_s2s(qa_s2s_model, qa_s2s_tokenizer, s2s_train_dset, s2s_valid_dset, s2s_args):
|
|
s2s_optimizer = AdamW(qa_s2s_model.parameters(), lr=s2s_args.learning_rate, eps=1e-8)
|
|
s2s_scheduler = get_linear_schedule_with_warmup(
|
|
s2s_optimizer,
|
|
num_warmup_steps=400,
|
|
num_training_steps=(s2s_args.num_epochs + 1) * math.ceil(len(s2s_train_dset) / s2s_args.batch_size),
|
|
)
|
|
for e in range(s2s_args.num_epochs):
|
|
train_qa_s2s_epoch(
|
|
qa_s2s_model,
|
|
s2s_train_dset,
|
|
qa_s2s_tokenizer,
|
|
s2s_optimizer,
|
|
s2s_scheduler,
|
|
s2s_args,
|
|
e,
|
|
curriculum=(e == 0),
|
|
)
|
|
m_save_dict = {
|
|
"model": qa_s2s_model.state_dict(),
|
|
"optimizer": s2s_optimizer.state_dict(),
|
|
"scheduler": s2s_scheduler.state_dict(),
|
|
}
|
|
print("Saving model {}".format(s2s_args.model_save_name))
|
|
eval_qa_s2s_epoch(qa_s2s_model, s2s_valid_dset, qa_s2s_tokenizer, s2s_args)
|
|
torch.save(m_save_dict, "{}_{}.pth".format(s2s_args.model_save_name, e))
|
|
|
|
|
|
# generate answer from input "question: ... context: <p> ..."
|
|
def qa_s2s_generate(
|
|
question_doc,
|
|
qa_s2s_model,
|
|
qa_s2s_tokenizer,
|
|
num_answers=1,
|
|
num_beams=None,
|
|
min_len=64,
|
|
max_len=256,
|
|
do_sample=False,
|
|
temp=1.0,
|
|
top_p=None,
|
|
top_k=None,
|
|
max_input_length=512,
|
|
device="cuda:0",
|
|
):
|
|
model_inputs = make_qa_s2s_batch(
|
|
[(question_doc, "A")],
|
|
qa_s2s_tokenizer,
|
|
max_input_length,
|
|
device=device,
|
|
)
|
|
n_beams = num_answers if num_beams is None else max(num_beams, num_answers)
|
|
generated_ids = qa_s2s_model.generate(
|
|
input_ids=model_inputs["input_ids"],
|
|
attention_mask=model_inputs["attention_mask"],
|
|
min_length=min_len,
|
|
max_length=max_len,
|
|
do_sample=do_sample,
|
|
early_stopping=True,
|
|
num_beams=1 if do_sample else n_beams,
|
|
temperature=temp,
|
|
top_k=top_k,
|
|
top_p=top_p,
|
|
eos_token_id=qa_s2s_tokenizer.eos_token_id,
|
|
no_repeat_ngram_size=3,
|
|
num_return_sequences=num_answers,
|
|
decoder_start_token_id=qa_s2s_tokenizer.bos_token_id,
|
|
)
|
|
return [qa_s2s_tokenizer.decode(ans_ids, skip_special_tokens=True).strip() for ans_ids in generated_ids]
|
|
|
|
|
|
###############
|
|
# ELI5-trained retrieval model usage
|
|
###############
|
|
def embed_passages_for_retrieval(passages, tokenizer, qa_embedder, max_length=128, device="cuda:0"):
|
|
a_toks = tokenizer(passages, max_length=max_length, padding="max_length", truncation=True)
|
|
a_ids, a_mask = (
|
|
torch.LongTensor(a_toks["input_ids"]).to(device),
|
|
torch.LongTensor(a_toks["attention_mask"]).to(device),
|
|
)
|
|
with torch.no_grad():
|
|
a_reps = qa_embedder.embed_answers(a_ids, a_mask).cpu().type(torch.float)
|
|
return a_reps.numpy()
|
|
|
|
|
|
def embed_questions_for_retrieval(q_ls, tokenizer, qa_embedder, device="cuda:0"):
|
|
q_toks = tokenizer(q_ls, max_length=128, padding="max_length", truncation=True)
|
|
q_ids, q_mask = (
|
|
torch.LongTensor(q_toks["input_ids"]).to(device),
|
|
torch.LongTensor(q_toks["attention_mask"]).to(device),
|
|
)
|
|
with torch.no_grad():
|
|
q_reps = qa_embedder.embed_questions(q_ids, q_mask).cpu().type(torch.float)
|
|
return q_reps.numpy()
|
|
|
|
|
|
def make_qa_dense_index(
|
|
qa_embedder,
|
|
tokenizer,
|
|
passages_dset,
|
|
batch_size=512,
|
|
max_length=128,
|
|
index_name="kilt_passages_reps.dat",
|
|
dtype="float32",
|
|
device="cuda:0",
|
|
):
|
|
st_time = time()
|
|
fp = np.memmap(index_name, dtype=dtype, mode="w+", shape=(passages_dset.num_rows, 128))
|
|
n_batches = math.ceil(passages_dset.num_rows / batch_size)
|
|
for i in range(n_batches):
|
|
passages = list(passages_dset[i * batch_size : (i + 1) * batch_size]["passage_text"])
|
|
reps = embed_passages_for_retrieval(passages, tokenizer, qa_embedder, max_length, device)
|
|
fp[i * batch_size : (i + 1) * batch_size] = reps
|
|
if i % 50 == 0:
|
|
print(i, time() - st_time)
|
|
|
|
|
|
def evaluate_retriever(qa_list, retriever_func, scoring_func, n_ret=10, verbose=False):
|
|
total_retriever_time = 0.0
|
|
total_retriever_score = 0.0
|
|
st_time = time()
|
|
for i, (question, answer) in enumerate(qa_list):
|
|
r_time = time()
|
|
retrieved_passages = retriever_func(question, n_ret)
|
|
total_retriever_time += time() - r_time
|
|
total_retriever_score += scoring_func(retrieved_passages, answer)
|
|
if verbose and ((i + 1) % 500 == 0 or i <= 1):
|
|
print(
|
|
"{:03d}: S-{:.4f} T-{:.4f} | {:.2f}".format(
|
|
i + 1, total_retriever_score / (i + 1), total_retriever_time / (i + 1), time() - st_time
|
|
)
|
|
)
|
|
return {"idf_recall": total_retriever_score / (i + 1), "retrieval_time": total_retriever_time / (i + 1)}
|
|
|
|
|
|
# build a support document for the question out of Wikipedia snippets
|
|
def query_qa_dense_index(
|
|
question, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10, min_length=20, device="cuda:0"
|
|
):
|
|
q_rep = embed_questions_for_retrieval([question], tokenizer, qa_embedder, device=device)
|
|
D, I = wiki_index.search(q_rep, 2 * n_results)
|
|
res_passages = [wiki_passages[int(i)] for i in I[0]]
|
|
support_doc = "<P> " + " <P> ".join([p["passage_text"] for p in res_passages])
|
|
res_list = [{k: p[k] for k in wiki_passages.column_names} for p in res_passages]
|
|
res_list = [res for res in res_list if len(res["passage_text"].split()) > min_length][:n_results]
|
|
for r, sc in zip(res_list, D[0]):
|
|
r["score"] = float(sc)
|
|
return support_doc, res_list
|
|
|
|
|
|
def batch_query_qa_dense_index(questions, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10):
|
|
q_rep = embed_questions_for_retrieval(questions, tokenizer, qa_embedder)
|
|
D, I = wiki_index.search(q_rep, n_results)
|
|
res_passages_lst = [[wiki_passages[int(i)] for i in i_lst] for i_lst in I]
|
|
support_doc_lst = [
|
|
"<P> " + " <P> ".join([p["passage_text"] for p in res_passages]) for res_passages in res_passages_lst
|
|
]
|
|
all_res_lists = []
|
|
for res_passages, dl in zip(res_passages_lst, D):
|
|
res_list = [{k: p[k] for k in wiki_passages.column_names} for p in res_passages]
|
|
for r, sc in zip(res_list, dl):
|
|
r["score"] = float(sc)
|
|
all_res_lists += [res_list[:]]
|
|
return support_doc_lst, all_res_lists
|
|
|
|
|
|
# find nearest neighbors of an answer or declarative text in Wikipedia snippets
|
|
def query_qa_dense_index_nn(passage, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10, min_length=20):
|
|
a_rep = embed_passages_for_retrieval([passage], tokenizer, qa_embedder)
|
|
D, I = wiki_index.search(a_rep, 2 * n_results)
|
|
res_passages = [wiki_passages[int(i)] for i in I[0]]
|
|
support_doc = "<P> " + " <P> ".join([p["passage_text"] for p in res_passages])
|
|
res_list = [{k: p[k] for k in wiki_passages.column_names} for p in res_passages]
|
|
res_list = [res for res in res_list if len(res["passage_text"].split()) > min_length][:n_results]
|
|
for r, sc, i in zip(res_list, D[0], I[0]):
|
|
r["passage_id"] = int(i)
|
|
r["score"] = float(sc)
|
|
return support_doc, res_list
|
|
|
|
|
|
def batch_query_qa_dense_index_nn(passages, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10):
|
|
a_reps = embed_passages_for_retrieval(passages, tokenizer, qa_embedder)
|
|
D, I = wiki_index.search(a_reps, n_results)
|
|
res_passages_lst = [[wiki_passages[int(i)] for i in i_lst] for i_lst in I]
|
|
support_doc_lst = [
|
|
"<P> " + " <P> ".join([p["passage_text"] for p in res_passages]) for res_passages in res_passages_lst
|
|
]
|
|
all_res_lists = []
|
|
for res_passages, dl, il in zip(res_passages_lst, D, I):
|
|
res_list = [{k: p[k] for k in wiki_passages.column_names} for p in res_passages]
|
|
for r, sc, i in zip(res_list, dl, il):
|
|
r["passage_id"] = int(i)
|
|
r["score"] = float(sc)
|
|
all_res_lists += [res_list[:]]
|
|
return support_doc_lst, all_res_lists
|