207 lines
7.5 KiB
Python
207 lines
7.5 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import subprocess
|
|
import sys
|
|
|
|
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
|
|
from transformers.testing_utils import TestCasePlus, require_torch
|
|
|
|
|
|
class OfflineTests(TestCasePlus):
|
|
@require_torch
|
|
def test_offline_mode(self):
|
|
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
|
|
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
|
|
# while running an external program
|
|
|
|
# python one-liner segments
|
|
|
|
# this must be loaded before socket.socket is monkey-patched
|
|
load = """
|
|
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
|
|
"""
|
|
|
|
run = """
|
|
mname = "hf-internal-testing/tiny-random-bert"
|
|
BertConfig.from_pretrained(mname)
|
|
BertModel.from_pretrained(mname)
|
|
BertTokenizer.from_pretrained(mname)
|
|
pipe = pipeline(task="fill-mask", model=mname)
|
|
print("success")
|
|
"""
|
|
|
|
mock = """
|
|
import socket
|
|
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn't access internet")
|
|
socket.socket = offline_socket
|
|
"""
|
|
|
|
# Force fetching the files so that we can use the cache
|
|
mname = "hf-internal-testing/tiny-random-bert"
|
|
BertConfig.from_pretrained(mname)
|
|
BertModel.from_pretrained(mname)
|
|
BertTokenizer.from_pretrained(mname)
|
|
pipeline(task="fill-mask", model=mname)
|
|
|
|
# baseline - just load from_pretrained with normal network
|
|
cmd = [sys.executable, "-c", "\n".join([load, run, mock])]
|
|
|
|
# should succeed
|
|
env = self.get_env()
|
|
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
|
|
env["TRANSFORMERS_OFFLINE"] = "1"
|
|
result = subprocess.run(cmd, env=env, check=False, capture_output=True)
|
|
self.assertEqual(result.returncode, 0, result.stderr)
|
|
self.assertIn("success", result.stdout.decode())
|
|
|
|
@require_torch
|
|
def test_offline_mode_no_internet(self):
|
|
# python one-liner segments
|
|
# this must be loaded before socket.socket is monkey-patched
|
|
load = """
|
|
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
|
|
"""
|
|
|
|
run = """
|
|
mname = "hf-internal-testing/tiny-random-bert"
|
|
BertConfig.from_pretrained(mname)
|
|
BertModel.from_pretrained(mname)
|
|
BertTokenizer.from_pretrained(mname)
|
|
pipe = pipeline(task="fill-mask", model=mname)
|
|
print("success")
|
|
"""
|
|
|
|
mock = """
|
|
import socket
|
|
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
|
|
socket.socket = offline_socket
|
|
"""
|
|
|
|
# Force fetching the files so that we can use the cache
|
|
mname = "hf-internal-testing/tiny-random-bert"
|
|
BertConfig.from_pretrained(mname)
|
|
BertModel.from_pretrained(mname)
|
|
BertTokenizer.from_pretrained(mname)
|
|
pipeline(task="fill-mask", model=mname)
|
|
|
|
# baseline - just load from_pretrained with normal network
|
|
cmd = [sys.executable, "-c", "\n".join([load, run, mock])]
|
|
|
|
# should succeed
|
|
env = self.get_env()
|
|
result = subprocess.run(cmd, env=env, check=False, capture_output=True)
|
|
self.assertEqual(result.returncode, 0, result.stderr)
|
|
self.assertIn("success", result.stdout.decode())
|
|
|
|
@require_torch
|
|
def test_offline_mode_sharded_checkpoint(self):
|
|
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
|
|
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
|
|
# while running an external program
|
|
|
|
# python one-liner segments
|
|
|
|
# this must be loaded before socket.socket is monkey-patched
|
|
load = """
|
|
from transformers import BertConfig, BertModel, BertTokenizer
|
|
"""
|
|
|
|
run = """
|
|
mname = "hf-internal-testing/tiny-random-bert-sharded"
|
|
BertConfig.from_pretrained(mname)
|
|
BertModel.from_pretrained(mname)
|
|
print("success")
|
|
"""
|
|
|
|
mock = """
|
|
import socket
|
|
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
|
|
socket.socket = offline_socket
|
|
"""
|
|
|
|
# baseline - just load from_pretrained with normal network
|
|
cmd = [sys.executable, "-c", "\n".join([load, run])]
|
|
|
|
# should succeed
|
|
env = self.get_env()
|
|
result = subprocess.run(cmd, env=env, check=False, capture_output=True)
|
|
self.assertEqual(result.returncode, 0, result.stderr)
|
|
self.assertIn("success", result.stdout.decode())
|
|
|
|
# next emulate no network
|
|
cmd = [sys.executable, "-c", "\n".join([load, mock, run])]
|
|
|
|
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
|
|
# env["TRANSFORMERS_OFFLINE"] = "0"
|
|
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
|
|
# self.assertEqual(result.returncode, 1, result.stderr)
|
|
|
|
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
|
|
env["TRANSFORMERS_OFFLINE"] = "1"
|
|
result = subprocess.run(cmd, env=env, check=False, capture_output=True)
|
|
self.assertEqual(result.returncode, 0, result.stderr)
|
|
self.assertIn("success", result.stdout.decode())
|
|
|
|
@require_torch
|
|
def test_offline_mode_pipeline_exception(self):
|
|
load = """
|
|
from transformers import pipeline
|
|
"""
|
|
run = """
|
|
mname = "hf-internal-testing/tiny-random-bert"
|
|
pipe = pipeline(model=mname)
|
|
"""
|
|
|
|
mock = """
|
|
import socket
|
|
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
|
|
socket.socket = offline_socket
|
|
"""
|
|
env = self.get_env()
|
|
env["TRANSFORMERS_OFFLINE"] = "1"
|
|
cmd = [sys.executable, "-c", "\n".join([load, mock, run])]
|
|
result = subprocess.run(cmd, env=env, check=False, capture_output=True)
|
|
self.assertEqual(result.returncode, 1, result.stderr)
|
|
self.assertIn(
|
|
"You cannot infer task automatically within `pipeline` when using offline mode",
|
|
result.stderr.decode().replace("\n", ""),
|
|
)
|
|
|
|
@require_torch
|
|
def test_offline_model_dynamic_model(self):
|
|
load = """
|
|
from transformers import AutoModel
|
|
"""
|
|
run = """
|
|
mname = "hf-internal-testing/test_dynamic_model"
|
|
AutoModel.from_pretrained(mname, trust_remote_code=True)
|
|
print("success")
|
|
"""
|
|
|
|
# baseline - just load from_pretrained with normal network
|
|
cmd = [sys.executable, "-c", "\n".join([load, run])]
|
|
|
|
# should succeed
|
|
env = self.get_env()
|
|
result = subprocess.run(cmd, env=env, check=False, capture_output=True)
|
|
self.assertEqual(result.returncode, 0, result.stderr)
|
|
self.assertIn("success", result.stdout.decode())
|
|
|
|
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
|
|
env["TRANSFORMERS_OFFLINE"] = "1"
|
|
result = subprocess.run(cmd, env=env, check=False, capture_output=True)
|
|
self.assertEqual(result.returncode, 0, result.stderr)
|
|
self.assertIn("success", result.stdout.decode())
|