f497f564bb
* Script & Manual edition * Update |
||
---|---|---|
.. | ||
scripts | ||
README.md | ||
__init__.py | ||
conftest.py | ||
test_multi_node_data_parallel.py | ||
test_multi_node_model_parallel.py | ||
test_single_node_gpu.py |
README.md
Testing new Hugging Face Deep Learning Container.
This document explains the testing strategy for releasing the new Hugging Face Deep Learning Container. AWS maintains 14 days of currency with framework releases. Besides framework releases, AWS release train is bi-weekly on Monday. Code cutoff date for any changes is the Wednesday before release-Monday.
Test Case 1: Releasing a New Version (Minor/Major) of 🤗 Transformers
Requirements: Test should run on Release Candidate for new transformers
release to validate the new release is compatible with the DLCs. To run these tests you need credentials for the HF SageMaker AWS Account. You can ask @philschmid or @n1t0 to get access.
Run Tests:
Before we can run the tests we need to adjust the requirements.txt
for PyTorch under /tests/sagemaker/scripts/pytorch
and for TensorFlow under /tests/sagemaker/scripts/pytorch
. We adjust the branch to the new RC-tag.
git+https://github.com/huggingface/transformers.git@v4.5.0.rc0 # install main or adjust ist with vX.X.X for installing version specific-transforms
After we adjusted the requirements.txt
we can run Amazon SageMaker tests with:
AWS_PROFILE=<enter-your-profile> make test-sagemaker
These tests take around 10-15 minutes to finish. Preferably make a screenshot of the successfully ran tests.
After Transformers Release:
After we have released the Release Candidate we need to create a PR at the Deep Learning Container Repository.
Creating the update PR:
- Update the two latest
buildspec.yaml
config for PyTorch and TensorFlow. The two latestbuildspec.yaml
are thebuildspec.yaml
without a version tag and the one with the highest framework version, e.g.buildspec-1-7-1.yml
and notbuildspec-1-6.yml
.
To update the buildspec.yaml
we need to adjust either the transformers_version
or the datasets_version
or both. Example for upgrading to transformers 4.5.0
and datasets 1.6.0
.
account_id: &ACCOUNT_ID <set-$ACCOUNT_ID-in-environment>
region: ®ION <set-$REGION-in-environment>
base_framework: &BASE_FRAMEWORK pytorch
framework: &FRAMEWORK !join [ "huggingface_", *BASE_FRAMEWORK]
version: &VERSION 1.6.0
short_version: &SHORT_VERSION 1.6
repository_info:
training_repository: &TRAINING_REPOSITORY
image_type: &TRAINING_IMAGE_TYPE training
root: !join [ "huggingface/", *BASE_FRAMEWORK, "/", *TRAINING_IMAGE_TYPE ]
repository_name: &REPOSITORY_NAME !join ["pr", "-", "huggingface", "-", *BASE_FRAMEWORK, "-", *TRAINING_IMAGE_TYPE]
repository: &REPOSITORY !join [ *ACCOUNT_ID, .dkr.ecr., *REGION, .amazonaws.com/,
*REPOSITORY_NAME ]
images:
BuildHuggingFacePytorchGpuPy37Cu110TrainingDockerImage:
<<: *TRAINING_REPOSITORY
build: &HUGGINGFACE_PYTORCH_GPU_TRAINING_PY3 false
image_size_baseline: &IMAGE_SIZE_BASELINE 15000
device_type: &DEVICE_TYPE gpu
python_version: &DOCKER_PYTHON_VERSION py3
tag_python_version: &TAG_PYTHON_VERSION py36
cuda_version: &CUDA_VERSION cu110
os_version: &OS_VERSION ubuntu18.04
transformers_version: &TRANSFORMERS_VERSION 4.5.0 # this was adjusted from 4.4.2 to 4.5.0
datasets_version: &DATASETS_VERSION 1.6.0 # this was adjusted from 1.5.0 to 1.6.0
tag: !join [ *VERSION, '-', 'transformers', *TRANSFORMERS_VERSION, '-', *DEVICE_TYPE, '-', *TAG_PYTHON_VERSION, '-',
*CUDA_VERSION, '-', *OS_VERSION ]
docker_file: !join [ docker/, *SHORT_VERSION, /, *DOCKER_PYTHON_VERSION, /,
*CUDA_VERSION, /Dockerfile., *DEVICE_TYPE ]
-
In the PR comment describe what test, we ran and with which package versions. Here you can copy the table from Current Tests.
-
In the PR comment describe what test we ran and with which framework versions. Here you can copy the table from Current Tests. You can take a look at this PR, which information are needed.
Test Case 2: Releasing a New AWS Framework DLC
Execute Tests
Requirements:
AWS is going to release new DLCs for PyTorch and/or TensorFlow. The Tests should run on the new framework versions with current transformers
release to validate the new framework release is compatible with the transformers
version. To run these tests you need credentials for the HF SageMaker AWS Account. You can ask @philschmid or @n1t0 to get access. AWS will notify us with a new issue in the repository pointing to their framework upgrade PR.
Run Tests:
Before we can run the tests we need to adjust the requirements.txt
for Pytorch under /tests/sagemaker/scripts/pytorch
and for Tensorflow under /tests/sagemaker/scripts/pytorch
. We add the new framework version to it.
torch==1.8.1 # for pytorch
tensorflow-gpu==2.5.0 # for tensorflow
After we adjusted the requirements.txt
we can run Amazon SageMaker tests with.
AWS_PROFILE=<enter-your-profile> make test-sagemaker
These tests take around 10-15 minutes to finish. Preferably make a screenshot of the successfully ran tests.
After successful Tests:
After we have successfully run tests for the new framework version we need to create a PR at the Deep Learning Container Repository.
Creating the update PR:
- Create a new
buildspec.yaml
config for PyTorch and TensorFlow and rename the oldbuildspec.yaml
tobuildespec-x.x.x
, wherex.x.x
is the base framework version, e.g. if pytorch 1.6.0 is the latest version inbuildspec.yaml
the file should be renamed tobuildspec-yaml-1-6.yaml
.
To create the new buildspec.yaml
we need to adjust the version
and the short_version
. Example for upgrading to pytorch 1.7.1
.
account_id: &ACCOUNT_ID <set-$ACCOUNT_ID-in-environment>
region: ®ION <set-$REGION-in-environment>
base_framework: &BASE_FRAMEWORK pytorch
framework: &FRAMEWORK !join [ "huggingface_", *BASE_FRAMEWORK]
version: &VERSION 1.7.1 # this was adjusted from 1.6.0 to 1.7.1
short_version: &SHORT_VERSION 1.7 # this was adjusted from 1.6 to 1.7
repository_info:
training_repository: &TRAINING_REPOSITORY
image_type: &TRAINING_IMAGE_TYPE training
root: !join [ "huggingface/", *BASE_FRAMEWORK, "/", *TRAINING_IMAGE_TYPE ]
repository_name: &REPOSITORY_NAME !join ["pr", "-", "huggingface", "-", *BASE_FRAMEWORK, "-", *TRAINING_IMAGE_TYPE]
repository: &REPOSITORY !join [ *ACCOUNT_ID, .dkr.ecr., *REGION, .amazonaws.com/,
*REPOSITORY_NAME ]
images:
BuildHuggingFacePytorchGpuPy37Cu110TrainingDockerImage:
<<: *TRAINING_REPOSITORY
build: &HUGGINGFACE_PYTORCH_GPU_TRAINING_PY3 false
image_size_baseline: &IMAGE_SIZE_BASELINE 15000
device_type: &DEVICE_TYPE gpu
python_version: &DOCKER_PYTHON_VERSION py3
tag_python_version: &TAG_PYTHON_VERSION py36
cuda_version: &CUDA_VERSION cu110
os_version: &OS_VERSION ubuntu18.04
transformers_version: &TRANSFORMERS_VERSION 4.4.2
datasets_version: &DATASETS_VERSION 1.5.0
tag: !join [ *VERSION, '-', 'transformers', *TRANSFORMERS_VERSION, '-', *DEVICE_TYPE, '-', *TAG_PYTHON_VERSION, '-',
*CUDA_VERSION, '-', *OS_VERSION ]
docker_file: !join [ docker/, *SHORT_VERSION, /, *DOCKER_PYTHON_VERSION, /,
*CUDA_VERSION, /Dockerfile., *DEVICE_TYPE ]
- In the PR comment describe what test we ran and with which framework versions. Here you can copy the table from Current Tests. You can take a look at this PR, which information are needed.
Current Tests
ID | Description | Platform | #GPUS | Collected & evaluated metrics |
---|---|---|---|---|
pytorch-transfromers-test-single | test bert finetuning using BERT fromtransformerlib+PT | SageMaker createTrainingJob | 1 | train_runtime, eval_accuracy & eval_loss |
pytorch-transfromers-test-2-ddp | test bert finetuning using BERT from transformer lib+ PT DPP | SageMaker createTrainingJob | 16 | train_runtime, eval_accuracy & eval_loss |
pytorch-transfromers-test-2-smd | test bert finetuning using BERT from transformer lib+ PT SM DDP | SageMaker createTrainingJob | 16 | train_runtime, eval_accuracy & eval_loss |
pytorch-transfromers-test-1-smp | test roberta finetuning using BERT from transformer lib+ PT SM MP | SageMaker createTrainingJob | 8 | train_runtime, eval_accuracy & eval_loss |
tensorflow-transfromers-test-single | Test bert finetuning using BERT from transformer lib+TF | SageMaker createTrainingJob | 1 | train_runtime, eval_accuracy & eval_loss |
tensorflow-transfromers-test-2-smd | test bert finetuning using BERT from transformer lib+ TF SM DDP | SageMaker createTrainingJob | 16 | train_runtime, eval_accuracy & eval_loss |