188 lines
7.5 KiB
Python
188 lines
7.5 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from transformers import (
|
|
MODEL_MAPPING,
|
|
TF_MODEL_MAPPING,
|
|
TOKENIZER_MAPPING,
|
|
ImageFeatureExtractionPipeline,
|
|
is_tf_available,
|
|
is_torch_available,
|
|
is_vision_available,
|
|
pipeline,
|
|
)
|
|
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_img():
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
return image
|
|
|
|
|
|
@is_pipeline_test
|
|
class ImageFeatureExtractionPipelineTests(unittest.TestCase):
|
|
model_mapping = MODEL_MAPPING
|
|
tf_model_mapping = TF_MODEL_MAPPING
|
|
|
|
@require_torch
|
|
def test_small_model_pt(self):
|
|
feature_extractor = pipeline(
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit", framework="pt"
|
|
)
|
|
img = prepare_img()
|
|
outputs = feature_extractor(img)
|
|
self.assertEqual(
|
|
nested_simplify(outputs[0][0]),
|
|
[-1.417, -0.392, -1.264, -1.196, 1.648, 0.885, 0.56, -0.606, -1.175, 0.823, 1.912, 0.081, -0.053, 1.119, -0.062, -1.757, -0.571, 0.075, 0.959, 0.118, 1.201, -0.672, -0.498, 0.364, 0.937, -1.623, 0.228, 0.19, 1.697, -1.115, 0.583, -0.981]) # fmt: skip
|
|
|
|
@require_torch
|
|
def test_small_model_w_pooler_pt(self):
|
|
feature_extractor = pipeline(
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit-w-pooler", framework="pt"
|
|
)
|
|
img = prepare_img()
|
|
outputs = feature_extractor(img, pool=True)
|
|
self.assertEqual(
|
|
nested_simplify(outputs[0]),
|
|
[-0.056, 0.083, 0.021, 0.038, 0.242, -0.279, -0.033, -0.003, 0.200, -0.192, 0.045, -0.095, -0.077, 0.017, -0.058, -0.063, -0.029, -0.204, 0.014, 0.042, 0.305, -0.205, -0.099, 0.146, -0.287, 0.020, 0.168, -0.052, 0.046, 0.048, -0.156, 0.093]) # fmt: skip
|
|
|
|
@require_tf
|
|
def test_small_model_tf(self):
|
|
feature_extractor = pipeline(
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit-w-pooler", framework="tf"
|
|
)
|
|
img = prepare_img()
|
|
outputs = feature_extractor(img)
|
|
self.assertEqual(
|
|
nested_simplify(outputs[0][0]),
|
|
[-1.417, -0.392, -1.264, -1.196, 1.648, 0.885, 0.56, -0.606, -1.175, 0.823, 1.912, 0.081, -0.053, 1.119, -0.062, -1.757, -0.571, 0.075, 0.959, 0.118, 1.201, -0.672, -0.498, 0.364, 0.937, -1.623, 0.228, 0.19, 1.697, -1.115, 0.583, -0.981]) # fmt: skip
|
|
|
|
@require_tf
|
|
def test_small_model_w_pooler_tf(self):
|
|
feature_extractor = pipeline(
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit-w-pooler", framework="tf"
|
|
)
|
|
img = prepare_img()
|
|
outputs = feature_extractor(img, pool=True)
|
|
self.assertEqual(
|
|
nested_simplify(outputs[0]),
|
|
[-0.056, 0.083, 0.021, 0.038, 0.242, -0.279, -0.033, -0.003, 0.200, -0.192, 0.045, -0.095, -0.077, 0.017, -0.058, -0.063, -0.029, -0.204, 0.014, 0.042, 0.305, -0.205, -0.099, 0.146, -0.287, 0.020, 0.168, -0.052, 0.046, 0.048, -0.156, 0.093]) # fmt: skip
|
|
|
|
@require_torch
|
|
def test_image_processing_small_model_pt(self):
|
|
feature_extractor = pipeline(
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit", framework="pt"
|
|
)
|
|
|
|
# test with image processor parameters
|
|
image_processor_kwargs = {"size": {"height": 300, "width": 300}}
|
|
img = prepare_img()
|
|
with pytest.raises(ValueError):
|
|
# Image doesn't match model input size
|
|
feature_extractor(img, image_processor_kwargs=image_processor_kwargs)
|
|
|
|
image_processor_kwargs = {"image_mean": [0, 0, 0], "image_std": [1, 1, 1]}
|
|
img = prepare_img()
|
|
outputs = feature_extractor(img, image_processor_kwargs=image_processor_kwargs)
|
|
self.assertEqual(np.squeeze(outputs).shape, (226, 32))
|
|
|
|
# Test pooling option
|
|
outputs = feature_extractor(img, pool=True)
|
|
self.assertEqual(np.squeeze(outputs).shape, (32,))
|
|
|
|
@require_tf
|
|
def test_image_processing_small_model_tf(self):
|
|
feature_extractor = pipeline(
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit", framework="tf"
|
|
)
|
|
|
|
# test with image processor parameters
|
|
image_processor_kwargs = {"size": {"height": 300, "width": 300}}
|
|
img = prepare_img()
|
|
with pytest.raises(ValueError):
|
|
# Image doesn't match model input size
|
|
feature_extractor(img, image_processor_kwargs=image_processor_kwargs)
|
|
|
|
image_processor_kwargs = {"image_mean": [0, 0, 0], "image_std": [1, 1, 1]}
|
|
img = prepare_img()
|
|
outputs = feature_extractor(img, image_processor_kwargs=image_processor_kwargs)
|
|
self.assertEqual(np.squeeze(outputs).shape, (226, 32))
|
|
|
|
# Test pooling option
|
|
outputs = feature_extractor(img, pool=True)
|
|
self.assertEqual(np.squeeze(outputs).shape, (32,))
|
|
|
|
@require_torch
|
|
def test_return_tensors_pt(self):
|
|
feature_extractor = pipeline(
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit", framework="pt"
|
|
)
|
|
img = prepare_img()
|
|
outputs = feature_extractor(img, return_tensors=True)
|
|
self.assertTrue(torch.is_tensor(outputs))
|
|
|
|
@require_tf
|
|
def test_return_tensors_tf(self):
|
|
feature_extractor = pipeline(
|
|
task="image-feature-extraction", model="hf-internal-testing/tiny-random-vit", framework="tf"
|
|
)
|
|
img = prepare_img()
|
|
outputs = feature_extractor(img, return_tensors=True)
|
|
self.assertTrue(tf.is_tensor(outputs))
|
|
|
|
def get_test_pipeline(self, model, tokenizer, processor):
|
|
if processor is None:
|
|
self.skipTest("No image processor")
|
|
|
|
elif type(model.config) in TOKENIZER_MAPPING:
|
|
self.skipTest("This is a bimodal model, we need to find a more consistent way to switch on those models.")
|
|
|
|
elif model.config.is_encoder_decoder:
|
|
self.skipTest(
|
|
"""encoder_decoder models are trickier for this pipeline.
|
|
Do we want encoder + decoder inputs to get some featues?
|
|
Do we want encoder only features ?
|
|
For now ignore those.
|
|
"""
|
|
)
|
|
|
|
feature_extractor = ImageFeatureExtractionPipeline(model=model, image_processor=processor)
|
|
img = prepare_img()
|
|
return feature_extractor, [img, img]
|
|
|
|
def run_pipeline_test(self, feature_extractor, examples):
|
|
imgs = examples
|
|
outputs = feature_extractor(imgs[0])
|
|
|
|
self.assertEqual(len(outputs), 1)
|
|
|
|
outputs = feature_extractor(imgs)
|
|
self.assertEqual(len(outputs), 2)
|