370 lines
13 KiB
Python
370 lines
13 KiB
Python
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
|
|
from transformers.pipelines import pipeline
|
|
from transformers.pipelines.document_question_answering import apply_tesseract
|
|
from transformers.testing_utils import (
|
|
is_pipeline_test,
|
|
nested_simplify,
|
|
require_detectron2,
|
|
require_pytesseract,
|
|
require_tf,
|
|
require_torch,
|
|
require_vision,
|
|
slow,
|
|
)
|
|
|
|
from .test_pipelines_common import ANY
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers.image_utils import load_image
|
|
else:
|
|
|
|
class Image:
|
|
@staticmethod
|
|
def open(*args, **kwargs):
|
|
pass
|
|
|
|
def load_image(_):
|
|
return None
|
|
|
|
|
|
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
|
|
# so we can expect it to be available.
|
|
INVOICE_URL = (
|
|
"https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png"
|
|
)
|
|
|
|
|
|
@is_pipeline_test
|
|
@require_torch
|
|
@require_vision
|
|
class DocumentQuestionAnsweringPipelineTests(unittest.TestCase):
|
|
model_mapping = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
|
|
|
|
@require_pytesseract
|
|
@require_vision
|
|
def get_test_pipeline(self, model, tokenizer, processor):
|
|
dqa_pipeline = pipeline(
|
|
"document-question-answering", model=model, tokenizer=tokenizer, image_processor=processor
|
|
)
|
|
|
|
image = INVOICE_URL
|
|
word_boxes = list(zip(*apply_tesseract(load_image(image), None, "")))
|
|
question = "What is the placebo?"
|
|
examples = [
|
|
{
|
|
"image": load_image(image),
|
|
"question": question,
|
|
},
|
|
{
|
|
"image": image,
|
|
"question": question,
|
|
},
|
|
{
|
|
"image": image,
|
|
"question": question,
|
|
"word_boxes": word_boxes,
|
|
},
|
|
]
|
|
return dqa_pipeline, examples
|
|
|
|
def run_pipeline_test(self, dqa_pipeline, examples):
|
|
outputs = dqa_pipeline(examples, top_k=2)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
[
|
|
{"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)},
|
|
{"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)},
|
|
]
|
|
]
|
|
* 3,
|
|
)
|
|
|
|
@require_torch
|
|
@require_detectron2
|
|
@require_pytesseract
|
|
def test_small_model_pt(self):
|
|
dqa_pipeline = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2")
|
|
image = INVOICE_URL
|
|
question = "How many cats are there?"
|
|
|
|
expected_output = [
|
|
{"score": 0.0001, "answer": "oy 2312/2019", "start": 38, "end": 39},
|
|
{"score": 0.0001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
|
|
]
|
|
outputs = dqa_pipeline(image=image, question=question, top_k=2)
|
|
self.assertEqual(nested_simplify(outputs, decimals=4), expected_output)
|
|
|
|
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
|
|
self.assertEqual(nested_simplify(outputs, decimals=4), expected_output)
|
|
|
|
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
|
|
# Empty answer probably
|
|
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
|
|
outputs = dqa_pipeline(image=image, question=question, top_k=2)
|
|
self.assertEqual(outputs, [])
|
|
|
|
# We can optionnally pass directly the words and bounding boxes
|
|
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
|
|
words = []
|
|
boxes = []
|
|
outputs = dqa_pipeline(image=image, question=question, words=words, boxes=boxes, top_k=2)
|
|
self.assertEqual(outputs, [])
|
|
|
|
# TODO: Enable this once hf-internal-testing/tiny-random-donut is implemented
|
|
# @require_torch
|
|
# def test_small_model_pt_donut(self):
|
|
# dqa_pipeline = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-donut")
|
|
# # dqa_pipeline = pipeline("document-question-answering", model="../tiny-random-donut")
|
|
# image = "https://templates.invoicehome.com/invoice-template-us-neat-750px.png"
|
|
# question = "How many cats are there?"
|
|
#
|
|
# outputs = dqa_pipeline(image=image, question=question, top_k=2)
|
|
# self.assertEqual(
|
|
# nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
|
|
# )
|
|
|
|
@slow
|
|
@require_torch
|
|
@require_detectron2
|
|
@require_pytesseract
|
|
def test_large_model_pt(self):
|
|
dqa_pipeline = pipeline(
|
|
"document-question-answering",
|
|
model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa",
|
|
revision="9977165",
|
|
)
|
|
image = INVOICE_URL
|
|
question = "What is the invoice number?"
|
|
|
|
outputs = dqa_pipeline(image=image, question=question, top_k=2)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
{"score": 0.9944, "answer": "us-001", "start": 16, "end": 16},
|
|
{"score": 0.0009, "answer": "us-001", "start": 16, "end": 16},
|
|
],
|
|
)
|
|
|
|
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
{"score": 0.9944, "answer": "us-001", "start": 16, "end": 16},
|
|
{"score": 0.0009, "answer": "us-001", "start": 16, "end": 16},
|
|
],
|
|
)
|
|
|
|
outputs = dqa_pipeline(
|
|
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
[
|
|
{"score": 0.9944, "answer": "us-001", "start": 16, "end": 16},
|
|
{"score": 0.0009, "answer": "us-001", "start": 16, "end": 16},
|
|
],
|
|
]
|
|
* 2,
|
|
)
|
|
|
|
@slow
|
|
@require_torch
|
|
@require_detectron2
|
|
@require_pytesseract
|
|
def test_large_model_pt_chunk(self):
|
|
dqa_pipeline = pipeline(
|
|
"document-question-answering",
|
|
model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa",
|
|
revision="9977165",
|
|
max_seq_len=50,
|
|
)
|
|
image = INVOICE_URL
|
|
question = "What is the invoice number?"
|
|
|
|
outputs = dqa_pipeline(image=image, question=question, top_k=2)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
{"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23},
|
|
{"score": 0.9948, "answer": "us-001", "start": 16, "end": 16},
|
|
],
|
|
)
|
|
|
|
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
{"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23},
|
|
{"score": 0.9948, "answer": "us-001", "start": 16, "end": 16},
|
|
],
|
|
)
|
|
|
|
outputs = dqa_pipeline(
|
|
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
[
|
|
{"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23},
|
|
{"score": 0.9948, "answer": "us-001", "start": 16, "end": 16},
|
|
]
|
|
]
|
|
* 2,
|
|
)
|
|
|
|
@slow
|
|
@require_torch
|
|
@require_pytesseract
|
|
@require_vision
|
|
def test_large_model_pt_layoutlm(self):
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True
|
|
)
|
|
dqa_pipeline = pipeline(
|
|
"document-question-answering",
|
|
model="impira/layoutlm-document-qa",
|
|
tokenizer=tokenizer,
|
|
revision="3dc6de3",
|
|
)
|
|
image = INVOICE_URL
|
|
question = "What is the invoice number?"
|
|
|
|
outputs = dqa_pipeline(image=image, question=question, top_k=2)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
|
|
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
|
|
],
|
|
)
|
|
|
|
outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
|
|
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
|
|
],
|
|
)
|
|
|
|
outputs = dqa_pipeline(
|
|
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
[
|
|
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
|
|
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
|
|
]
|
|
]
|
|
* 2,
|
|
)
|
|
|
|
word_boxes = list(zip(*apply_tesseract(load_image(image), None, "")))
|
|
|
|
# This model should also work if `image` is set to None
|
|
outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
{"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
|
|
{"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
|
|
],
|
|
)
|
|
|
|
@slow
|
|
@require_torch
|
|
@require_pytesseract
|
|
@require_vision
|
|
def test_large_model_pt_layoutlm_chunk(self):
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True
|
|
)
|
|
dqa_pipeline = pipeline(
|
|
"document-question-answering",
|
|
model="impira/layoutlm-document-qa",
|
|
tokenizer=tokenizer,
|
|
revision="3dc6de3",
|
|
max_seq_len=50,
|
|
)
|
|
image = INVOICE_URL
|
|
question = "What is the invoice number?"
|
|
|
|
outputs = dqa_pipeline(image=image, question=question, top_k=2)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
{"score": 0.9999, "answer": "us-001", "start": 16, "end": 16},
|
|
{"score": 0.9998, "answer": "us-001", "start": 16, "end": 16},
|
|
],
|
|
)
|
|
|
|
outputs = dqa_pipeline(
|
|
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
[
|
|
{"score": 0.9999, "answer": "us-001", "start": 16, "end": 16},
|
|
{"score": 0.9998, "answer": "us-001", "start": 16, "end": 16},
|
|
]
|
|
]
|
|
* 2,
|
|
)
|
|
|
|
word_boxes = list(zip(*apply_tesseract(load_image(image), None, "")))
|
|
|
|
# This model should also work if `image` is set to None
|
|
outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2)
|
|
self.assertEqual(
|
|
nested_simplify(outputs, decimals=4),
|
|
[
|
|
{"score": 0.9999, "answer": "us-001", "start": 16, "end": 16},
|
|
{"score": 0.9998, "answer": "us-001", "start": 16, "end": 16},
|
|
],
|
|
)
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_large_model_pt_donut(self):
|
|
dqa_pipeline = pipeline(
|
|
"document-question-answering",
|
|
model="naver-clova-ix/donut-base-finetuned-docvqa",
|
|
tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa"),
|
|
feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa",
|
|
)
|
|
|
|
image = INVOICE_URL
|
|
question = "What is the invoice number?"
|
|
outputs = dqa_pipeline(image=image, question=question, top_k=2)
|
|
self.assertEqual(nested_simplify(outputs, decimals=4), [{"answer": "us-001"}])
|
|
|
|
@require_tf
|
|
@unittest.skip("Document question answering not implemented in TF")
|
|
def test_small_model_tf(self):
|
|
pass
|