532 lines
24 KiB
Python
532 lines
24 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import json
|
|
import pathlib
|
|
import unittest
|
|
|
|
from transformers.testing_utils import require_torch, require_vision, slow
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import AnnotationFormatTestMixin, ImageProcessingTestMixin, prepare_image_inputs
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import YolosImageProcessor
|
|
|
|
|
|
class YolosImageProcessingTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_resize=True,
|
|
size=None,
|
|
do_normalize=True,
|
|
image_mean=[0.5, 0.5, 0.5],
|
|
image_std=[0.5, 0.5, 0.5],
|
|
do_rescale=True,
|
|
rescale_factor=1 / 255,
|
|
do_pad=True,
|
|
):
|
|
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
|
|
size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
self.do_rescale = do_rescale
|
|
self.rescale_factor = rescale_factor
|
|
self.do_pad = do_pad
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
"do_normalize": self.do_normalize,
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
"do_rescale": self.do_rescale,
|
|
"rescale_factor": self.rescale_factor,
|
|
"do_pad": self.do_pad,
|
|
}
|
|
|
|
def get_expected_values(self, image_inputs, batched=False):
|
|
"""
|
|
This function computes the expected height and width when providing images to YolosImageProcessor,
|
|
assuming do_resize is set to True with a scalar size.
|
|
"""
|
|
if not batched:
|
|
image = image_inputs[0]
|
|
if isinstance(image, Image.Image):
|
|
width, height = image.size
|
|
else:
|
|
height, width = image.shape[1], image.shape[2]
|
|
|
|
size = self.size["shortest_edge"]
|
|
max_size = self.size.get("longest_edge", None)
|
|
if max_size is not None:
|
|
min_original_size = float(min((height, width)))
|
|
max_original_size = float(max((height, width)))
|
|
if max_original_size / min_original_size * size > max_size:
|
|
size = int(round(max_size * min_original_size / max_original_size))
|
|
|
|
if width < height and width != size:
|
|
height = int(size * height / width)
|
|
width = size
|
|
elif height < width and height != size:
|
|
width = int(size * width / height)
|
|
height = size
|
|
width_mod = width % 16
|
|
height_mod = height % 16
|
|
expected_width = width - width_mod
|
|
expected_height = height - height_mod
|
|
|
|
else:
|
|
expected_values = []
|
|
for image in image_inputs:
|
|
expected_height, expected_width = self.get_expected_values([image])
|
|
expected_values.append((expected_height, expected_width))
|
|
expected_height = max(expected_values, key=lambda item: item[0])[0]
|
|
expected_width = max(expected_values, key=lambda item: item[1])[1]
|
|
|
|
return expected_height, expected_width
|
|
|
|
def expected_output_image_shape(self, images):
|
|
height, width = self.get_expected_values(images, batched=True)
|
|
return self.num_channels, height, width
|
|
|
|
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
return prepare_image_inputs(
|
|
batch_size=self.batch_size,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class YolosImageProcessingTest(AnnotationFormatTestMixin, ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = YolosImageProcessor if is_vision_available() else None
|
|
|
|
def setUp(self):
|
|
self.image_processor_tester = YolosImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processing, "image_mean"))
|
|
self.assertTrue(hasattr(image_processing, "image_std"))
|
|
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
|
self.assertTrue(hasattr(image_processing, "do_resize"))
|
|
self.assertTrue(hasattr(image_processing, "size"))
|
|
|
|
def test_image_processor_from_dict_with_kwargs(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333})
|
|
self.assertEqual(image_processor.do_pad, True)
|
|
|
|
image_processor = self.image_processing_class.from_dict(
|
|
self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=False
|
|
)
|
|
self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84})
|
|
self.assertEqual(image_processor.do_pad, False)
|
|
|
|
def test_equivalence_padding(self):
|
|
# Initialize image_processings
|
|
image_processing_1 = self.image_processing_class(**self.image_processor_dict)
|
|
image_processing_2 = self.image_processing_class(do_resize=False, do_normalize=False, do_rescale=False)
|
|
# create random PyTorch tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, torch.Tensor)
|
|
|
|
# Test whether the method "pad" and calling the image processor return the same tensors
|
|
encoded_images_with_method = image_processing_1.pad(image_inputs, return_tensors="pt")
|
|
encoded_images = image_processing_2(image_inputs, return_tensors="pt")
|
|
|
|
self.assertTrue(
|
|
torch.allclose(encoded_images_with_method["pixel_values"], encoded_images["pixel_values"], atol=1e-4)
|
|
)
|
|
|
|
def test_resize_max_size_respected(self):
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
|
|
# create torch tensors as image
|
|
image = torch.randint(0, 256, (3, 100, 1500), dtype=torch.uint8)
|
|
processed_image = image_processor(
|
|
image, size={"longest_edge": 1333, "shortest_edge": 800}, do_pad=False, return_tensors="pt"
|
|
)["pixel_values"]
|
|
|
|
self.assertTrue(processed_image.shape[-1] <= 1333)
|
|
self.assertTrue(processed_image.shape[-2] <= 800)
|
|
|
|
@slow
|
|
def test_call_pytorch_with_coco_detection_annotations(self):
|
|
# prepare image and target
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
|
|
target = json.loads(f.read())
|
|
|
|
target = {"image_id": 39769, "annotations": target}
|
|
|
|
# encode them
|
|
image_processing = YolosImageProcessor.from_pretrained("hustvl/yolos-small")
|
|
encoding = image_processing(images=image, annotations=target, return_tensors="pt")
|
|
|
|
# verify pixel values
|
|
expected_shape = torch.Size([1, 3, 800, 1056])
|
|
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
|
|
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
|
|
|
|
# verify area
|
|
expected_area = torch.tensor([5832.7256, 11144.6689, 484763.2500, 829269.8125, 146579.4531, 164177.6250])
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
|
|
# verify boxes
|
|
expected_boxes_shape = torch.Size([6, 4])
|
|
self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
|
|
expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
|
|
# verify image_id
|
|
expected_image_id = torch.tensor([39769])
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
|
|
# verify is_crowd
|
|
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
|
|
# verify class_labels
|
|
expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17])
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
|
|
# verify orig_size
|
|
expected_orig_size = torch.tensor([480, 640])
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
|
|
# verify size
|
|
expected_size = torch.tensor([800, 1056])
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
|
|
|
|
@slow
|
|
def test_call_pytorch_with_coco_panoptic_annotations(self):
|
|
# prepare image, target and masks_path
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
|
|
target = json.loads(f.read())
|
|
|
|
target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
|
|
|
|
masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")
|
|
|
|
# encode them
|
|
image_processing = YolosImageProcessor(format="coco_panoptic")
|
|
encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt")
|
|
|
|
# verify pixel values
|
|
expected_shape = torch.Size([1, 3, 800, 1056])
|
|
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
|
|
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
|
|
|
|
# verify area
|
|
expected_area = torch.tensor([146591.5000, 163974.2500, 480092.2500, 11187.0000, 5824.5000, 7562.5000])
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
|
|
# verify boxes
|
|
expected_boxes_shape = torch.Size([6, 4])
|
|
self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
|
|
expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
|
|
# verify image_id
|
|
expected_image_id = torch.tensor([39769])
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
|
|
# verify is_crowd
|
|
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
|
|
# verify class_labels
|
|
expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93])
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
|
|
# verify masks
|
|
expected_masks_sum = 815161
|
|
self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum)
|
|
# verify orig_size
|
|
expected_orig_size = torch.tensor([480, 640])
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
|
|
# verify size
|
|
expected_size = torch.tensor([800, 1056])
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
|
|
|
|
# Output size is slight different from DETR as yolos takes mod of 16
|
|
@slow
|
|
def test_batched_coco_detection_annotations(self):
|
|
image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))
|
|
|
|
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
|
|
target = json.loads(f.read())
|
|
|
|
annotations_0 = {"image_id": 39769, "annotations": target}
|
|
annotations_1 = {"image_id": 39769, "annotations": target}
|
|
|
|
# Adjust the bounding boxes for the resized image
|
|
w_0, h_0 = image_0.size
|
|
w_1, h_1 = image_1.size
|
|
for i in range(len(annotations_1["annotations"])):
|
|
coords = annotations_1["annotations"][i]["bbox"]
|
|
new_bbox = [
|
|
coords[0] * w_1 / w_0,
|
|
coords[1] * h_1 / h_0,
|
|
coords[2] * w_1 / w_0,
|
|
coords[3] * h_1 / h_0,
|
|
]
|
|
annotations_1["annotations"][i]["bbox"] = new_bbox
|
|
|
|
images = [image_0, image_1]
|
|
annotations = [annotations_0, annotations_1]
|
|
|
|
image_processing = YolosImageProcessor()
|
|
encoding = image_processing(
|
|
images=images,
|
|
annotations=annotations,
|
|
return_segmentation_masks=True,
|
|
return_tensors="pt", # do_convert_annotations=True
|
|
)
|
|
|
|
# Check the pixel values have been padded
|
|
postprocessed_height, postprocessed_width = 800, 1056
|
|
expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
|
|
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
|
|
|
|
# Check the bounding boxes have been adjusted for padded images
|
|
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
|
|
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
|
|
expected_boxes_0 = torch.tensor(
|
|
[
|
|
[0.6879, 0.4609, 0.0755, 0.3691],
|
|
[0.2118, 0.3359, 0.2601, 0.1566],
|
|
[0.5011, 0.5000, 0.9979, 1.0000],
|
|
[0.5010, 0.5020, 0.9979, 0.9959],
|
|
[0.3284, 0.5944, 0.5884, 0.8112],
|
|
[0.8394, 0.5445, 0.3213, 0.9110],
|
|
]
|
|
)
|
|
expected_boxes_1 = torch.tensor(
|
|
[
|
|
[0.4169, 0.2765, 0.0458, 0.2215],
|
|
[0.1284, 0.2016, 0.1576, 0.0940],
|
|
[0.3792, 0.4933, 0.7559, 0.9865],
|
|
[0.3794, 0.5002, 0.7563, 0.9955],
|
|
[0.1990, 0.5456, 0.3566, 0.8646],
|
|
[0.5845, 0.4115, 0.3462, 0.7161],
|
|
]
|
|
)
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, atol=1e-3))
|
|
self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, atol=1e-3))
|
|
|
|
# Check the masks have also been padded
|
|
self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1056]))
|
|
self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1056]))
|
|
|
|
# Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
|
|
# format and not in the range [0, 1]
|
|
encoding = image_processing(
|
|
images=images,
|
|
annotations=annotations,
|
|
return_segmentation_masks=True,
|
|
do_convert_annotations=False,
|
|
return_tensors="pt",
|
|
)
|
|
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
|
|
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
|
|
# Convert to absolute coordinates
|
|
unnormalized_boxes_0 = torch.vstack(
|
|
[
|
|
expected_boxes_0[:, 0] * postprocessed_width,
|
|
expected_boxes_0[:, 1] * postprocessed_height,
|
|
expected_boxes_0[:, 2] * postprocessed_width,
|
|
expected_boxes_0[:, 3] * postprocessed_height,
|
|
]
|
|
).T
|
|
unnormalized_boxes_1 = torch.vstack(
|
|
[
|
|
expected_boxes_1[:, 0] * postprocessed_width,
|
|
expected_boxes_1[:, 1] * postprocessed_height,
|
|
expected_boxes_1[:, 2] * postprocessed_width,
|
|
expected_boxes_1[:, 3] * postprocessed_height,
|
|
]
|
|
).T
|
|
# Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
|
|
expected_boxes_0 = torch.vstack(
|
|
[
|
|
unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
|
|
unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
|
|
unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
|
|
unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
|
|
]
|
|
).T
|
|
expected_boxes_1 = torch.vstack(
|
|
[
|
|
unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
|
|
unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
|
|
unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
|
|
unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
|
|
]
|
|
).T
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, atol=1))
|
|
self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, atol=1))
|
|
|
|
# Output size is slight different from DETR as yolos takes mod of 16
|
|
def test_batched_coco_panoptic_annotations(self):
|
|
# prepare image, target and masks_path
|
|
image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))
|
|
|
|
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
|
|
target = json.loads(f.read())
|
|
|
|
annotation_0 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
|
|
annotation_1 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
|
|
|
|
w_0, h_0 = image_0.size
|
|
w_1, h_1 = image_1.size
|
|
for i in range(len(annotation_1["segments_info"])):
|
|
coords = annotation_1["segments_info"][i]["bbox"]
|
|
new_bbox = [
|
|
coords[0] * w_1 / w_0,
|
|
coords[1] * h_1 / h_0,
|
|
coords[2] * w_1 / w_0,
|
|
coords[3] * h_1 / h_0,
|
|
]
|
|
annotation_1["segments_info"][i]["bbox"] = new_bbox
|
|
|
|
masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")
|
|
|
|
images = [image_0, image_1]
|
|
annotations = [annotation_0, annotation_1]
|
|
|
|
# encode them
|
|
image_processing = YolosImageProcessor(format="coco_panoptic")
|
|
encoding = image_processing(
|
|
images=images,
|
|
annotations=annotations,
|
|
masks_path=masks_path,
|
|
return_tensors="pt",
|
|
return_segmentation_masks=True,
|
|
)
|
|
|
|
# Check the pixel values have been padded
|
|
postprocessed_height, postprocessed_width = 800, 1056
|
|
expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
|
|
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
|
|
|
|
# Check the bounding boxes have been adjusted for padded images
|
|
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
|
|
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
|
|
expected_boxes_0 = torch.tensor(
|
|
[
|
|
[0.2625, 0.5437, 0.4688, 0.8625],
|
|
[0.7719, 0.4104, 0.4531, 0.7125],
|
|
[0.5000, 0.4927, 0.9969, 0.9854],
|
|
[0.1688, 0.2000, 0.2063, 0.0917],
|
|
[0.5492, 0.2760, 0.0578, 0.2187],
|
|
[0.4992, 0.4990, 0.9984, 0.9979],
|
|
]
|
|
)
|
|
expected_boxes_1 = torch.tensor(
|
|
[
|
|
[0.1591, 0.3262, 0.2841, 0.5175],
|
|
[0.4678, 0.2463, 0.2746, 0.4275],
|
|
[0.3030, 0.2956, 0.6042, 0.5913],
|
|
[0.1023, 0.1200, 0.1250, 0.0550],
|
|
[0.3329, 0.1656, 0.0350, 0.1312],
|
|
[0.3026, 0.2994, 0.6051, 0.5987],
|
|
]
|
|
)
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, atol=1e-3))
|
|
self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, atol=1e-3))
|
|
|
|
# Check the masks have also been padded
|
|
self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1056]))
|
|
self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1056]))
|
|
|
|
# Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
|
|
# format and not in the range [0, 1]
|
|
encoding = image_processing(
|
|
images=images,
|
|
annotations=annotations,
|
|
masks_path=masks_path,
|
|
return_segmentation_masks=True,
|
|
do_convert_annotations=False,
|
|
return_tensors="pt",
|
|
)
|
|
self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
|
|
self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
|
|
# Convert to absolute coordinates
|
|
unnormalized_boxes_0 = torch.vstack(
|
|
[
|
|
expected_boxes_0[:, 0] * postprocessed_width,
|
|
expected_boxes_0[:, 1] * postprocessed_height,
|
|
expected_boxes_0[:, 2] * postprocessed_width,
|
|
expected_boxes_0[:, 3] * postprocessed_height,
|
|
]
|
|
).T
|
|
unnormalized_boxes_1 = torch.vstack(
|
|
[
|
|
expected_boxes_1[:, 0] * postprocessed_width,
|
|
expected_boxes_1[:, 1] * postprocessed_height,
|
|
expected_boxes_1[:, 2] * postprocessed_width,
|
|
expected_boxes_1[:, 3] * postprocessed_height,
|
|
]
|
|
).T
|
|
# Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
|
|
expected_boxes_0 = torch.vstack(
|
|
[
|
|
unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
|
|
unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
|
|
unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
|
|
unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
|
|
]
|
|
).T
|
|
expected_boxes_1 = torch.vstack(
|
|
[
|
|
unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
|
|
unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
|
|
unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
|
|
unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
|
|
]
|
|
).T
|
|
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1))
|
|
self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1))
|