241 lines
9.1 KiB
Python
241 lines
9.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import annotations
|
|
|
|
import unittest
|
|
|
|
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
|
|
from transformers.testing_utils import require_tf, slow
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
from transformers.models.xglm.modeling_tf_xglm import (
|
|
TFXGLMForCausalLM,
|
|
TFXGLMModel,
|
|
)
|
|
|
|
|
|
@require_tf
|
|
class TFXGLMModelTester:
|
|
config_cls = XGLMConfig
|
|
config_updates = {}
|
|
hidden_act = "gelu"
|
|
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=14,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
d_model=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
ffn_dim=37,
|
|
activation_function="gelu",
|
|
activation_dropout=0.1,
|
|
attention_dropout=0.1,
|
|
max_position_embeddings=512,
|
|
initializer_range=0.02,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = d_model
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.ffn_dim = ffn_dim
|
|
self.activation_function = activation_function
|
|
self.activation_dropout = activation_dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.initializer_range = initializer_range
|
|
self.scope = None
|
|
self.bos_token_id = 0
|
|
self.eos_token_id = 2
|
|
self.pad_token_id = 1
|
|
|
|
def get_large_model_config(self):
|
|
return XGLMConfig.from_pretrained("facebook/xglm-564M")
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = tf.clip_by_value(
|
|
ids_tensor([self.batch_size, self.seq_length], self.vocab_size), clip_value_min=0, clip_value_max=3
|
|
)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
config = self.get_config()
|
|
|
|
head_mask = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
head_mask,
|
|
)
|
|
|
|
def get_config(self):
|
|
return XGLMConfig(
|
|
vocab_size=self.vocab_size,
|
|
d_model=self.hidden_size,
|
|
num_layers=self.num_hidden_layers,
|
|
attention_heads=self.num_attention_heads,
|
|
ffn_dim=self.ffn_dim,
|
|
activation_function=self.activation_function,
|
|
activation_dropout=self.activation_dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
initializer_range=self.initializer_range,
|
|
use_cache=True,
|
|
bos_token_id=self.bos_token_id,
|
|
eos_token_id=self.eos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
return_dict=True,
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
head_mask,
|
|
) = config_and_inputs
|
|
|
|
inputs_dict = {
|
|
"input_ids": input_ids,
|
|
"head_mask": head_mask,
|
|
}
|
|
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_tf
|
|
class TFXGLMModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
|
|
all_generative_model_classes = (TFXGLMForCausalLM,) if is_tf_available() else ()
|
|
pipeline_model_mapping = (
|
|
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
|
|
)
|
|
test_onnx = False
|
|
test_missing_keys = False
|
|
test_pruning = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = TFXGLMModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=XGLMConfig, n_embd=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "facebook/xglm-564M"
|
|
model = TFXGLMModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.")
|
|
def test_resize_token_embeddings(self):
|
|
super().test_resize_token_embeddings()
|
|
|
|
|
|
@require_tf
|
|
class TFXGLMModelLanguageGenerationTest(unittest.TestCase):
|
|
@slow
|
|
def test_lm_generate_xglm(self, verify_outputs=True):
|
|
model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
|
|
input_ids = tf.convert_to_tensor([[2, 268, 9865]], dtype=tf.int32) # The dog
|
|
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
|
|
expected_output_ids = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: skip
|
|
output_ids = model.generate(input_ids, do_sample=False, num_beams=1)
|
|
if verify_outputs:
|
|
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
|
|
|
|
@slow
|
|
def test_xglm_sample(self):
|
|
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M")
|
|
model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
|
|
|
|
tf.random.set_seed(0)
|
|
tokenized = tokenizer("Today is a nice day and", return_tensors="tf")
|
|
input_ids = tokenized.input_ids
|
|
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
|
|
with tf.device(":/CPU:0"):
|
|
output_ids = model.generate(input_ids, do_sample=True, seed=[7, 0])
|
|
output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
|
EXPECTED_OUTPUT_STR = (
|
|
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
|
|
)
|
|
self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
|
|
|
|
@slow
|
|
def test_batch_generation(self):
|
|
model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
|
|
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M")
|
|
|
|
tokenizer.padding_side = "left"
|
|
|
|
# use different length sentences to test batching
|
|
sentences = [
|
|
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
|
|
"left-padding, such as in batched generation. The output for the sequence below should be the same "
|
|
"regardless of whether left padding is applied or not. When",
|
|
"Hello, my dog is a little",
|
|
]
|
|
|
|
inputs = tokenizer(sentences, return_tensors="tf", padding=True)
|
|
input_ids = inputs["input_ids"]
|
|
|
|
outputs = model.generate(input_ids=input_ids, attention_mask=inputs["attention_mask"], max_new_tokens=12)
|
|
|
|
inputs_non_padded = tokenizer(sentences[0], return_tensors="tf").input_ids
|
|
output_non_padded = model.generate(input_ids=inputs_non_padded, max_new_tokens=12)
|
|
|
|
inputs_padded = tokenizer(sentences[1], return_tensors="tf").input_ids
|
|
output_padded = model.generate(input_ids=inputs_padded, max_new_tokens=12)
|
|
|
|
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
|
|
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)
|
|
|
|
expected_output_sentence = [
|
|
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
|
|
"left-padding, such as in batched generation. The output for the sequence below should be the same "
|
|
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
|
|
"a single",
|
|
"Hello, my dog is a little bit of a shy one, but he is very friendly",
|
|
]
|
|
self.assertListEqual(expected_output_sentence, batch_out_sentence)
|
|
self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])
|