195 lines
7.9 KiB
Python
195 lines
7.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import VitMatteImageProcessor
|
|
|
|
|
|
class VitMatteImageProcessingTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_rescale=True,
|
|
rescale_factor=0.5,
|
|
do_pad=True,
|
|
size_divisibility=10,
|
|
do_normalize=True,
|
|
image_mean=[0.5, 0.5, 0.5],
|
|
image_std=[0.5, 0.5, 0.5],
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_rescale = do_rescale
|
|
self.rescale_factor = rescale_factor
|
|
self.do_pad = do_pad
|
|
self.size_divisibility = size_divisibility
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
"do_normalize": self.do_normalize,
|
|
"do_rescale": self.do_rescale,
|
|
"rescale_factor": self.rescale_factor,
|
|
"do_pad": self.do_pad,
|
|
"size_divisibility": self.size_divisibility,
|
|
}
|
|
|
|
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
return prepare_image_inputs(
|
|
batch_size=self.batch_size,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class VitMatteImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = VitMatteImageProcessor if is_vision_available() else None
|
|
|
|
def setUp(self):
|
|
self.image_processor_tester = VitMatteImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processing, "image_mean"))
|
|
self.assertTrue(hasattr(image_processing, "image_std"))
|
|
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
|
self.assertTrue(hasattr(image_processing, "do_rescale"))
|
|
self.assertTrue(hasattr(image_processing, "rescale_factor"))
|
|
self.assertTrue(hasattr(image_processing, "do_pad"))
|
|
self.assertTrue(hasattr(image_processing, "size_divisibility"))
|
|
|
|
def test_call_numpy(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random numpy tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
# Test not batched input (image processor does not support batched inputs)
|
|
image = image_inputs[0]
|
|
trimap = np.random.randint(0, 3, size=image.shape[:2])
|
|
encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values
|
|
|
|
# Verify that width and height can be divided by size_divisibility
|
|
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
|
|
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
|
|
|
|
def test_call_pytorch(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PyTorch tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
|
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, torch.Tensor)
|
|
|
|
# Test not batched input (image processor does not support batched inputs)
|
|
image = image_inputs[0]
|
|
trimap = np.random.randint(0, 3, size=image.shape[:2])
|
|
encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values
|
|
|
|
# Verify that width and height can be divided by size_divisibility
|
|
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
|
|
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
|
|
|
|
def test_call_pil(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PIL images
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, Image.Image)
|
|
|
|
# Test not batched input (image processor does not support batched inputs)
|
|
image = image_inputs[0]
|
|
trimap = np.random.randint(0, 3, size=image.size[::-1])
|
|
encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values
|
|
|
|
# Verify that width and height can be divided by size_divisibility
|
|
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
|
|
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
|
|
|
|
def test_call_numpy_4_channels(self):
|
|
# Test that can process images which have an arbitrary number of channels
|
|
# Initialize image_processing
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
|
|
# create random numpy tensors
|
|
self.image_processor_tester.num_channels = 4
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
|
|
# Test not batched input (image processor does not support batched inputs)
|
|
image = image_inputs[0]
|
|
trimap = np.random.randint(0, 3, size=image.shape[:2])
|
|
encoded_images = image_processor(
|
|
images=image,
|
|
trimaps=trimap,
|
|
input_data_format="channels_first",
|
|
image_mean=0,
|
|
image_std=1,
|
|
return_tensors="pt",
|
|
).pixel_values
|
|
|
|
# Verify that width and height can be divided by size_divisibility
|
|
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
|
|
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
|
|
|
|
def test_padding(self):
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
image = np.random.randn(3, 249, 491)
|
|
images = image_processing.pad_image(image)
|
|
assert images.shape == (3, 256, 512)
|