transformers/tests/models/vipllava/test_modeling_vipllava.py

421 lines
17 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch VipLlava model. """
import copy
import gc
import unittest
import requests
from transformers import (
AutoProcessor,
VipLlavaConfig,
VipLlavaForConditionalGeneration,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import require_bitsandbytes, require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
if is_torch_available():
import torch
else:
is_torch_greater_or_equal_than_2_0 = False
if is_vision_available():
from PIL import Image
# Copied from transformers.tests.models.llava.test_modeling_llava.LlavaVisionText2TextModelTester with Llava->VipLlava
class VipLlavaVisionText2TextModelTester:
# Ignore copy
def __init__(
self,
parent,
ignore_index=-100,
image_token_index=0,
projector_hidden_act="gelu",
seq_length=7,
vision_feature_layers=[0, 0, 1, 1, 0],
text_config={
"model_type": "llama",
"seq_length": 7,
"is_training": True,
"use_input_mask": True,
"use_token_type_ids": False,
"use_labels": True,
"vocab_size": 99,
"hidden_size": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 16,
"type_sequence_label_size": 2,
"initializer_range": 0.02,
"num_labels": 3,
"num_choices": 4,
"pad_token_id": 0,
},
is_training=True,
vision_config={
"batch_size": 12,
"image_size": 30,
"patch_size": 2,
"num_channels": 3,
"is_training": True,
"hidden_size": 32,
"projection_dim": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"dropout": 0.1,
"attention_dropout": 0.1,
"initializer_range": 0.02,
},
):
self.parent = parent
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.vision_feature_layers = vision_feature_layers
self.text_config = text_config
self.vision_config = vision_config
self.seq_length = seq_length
self.num_hidden_layers = text_config["num_hidden_layers"]
self.vocab_size = text_config["vocab_size"]
self.hidden_size = text_config["hidden_size"]
self.num_attention_heads = text_config["num_attention_heads"]
self.is_training = is_training
self.batch_size = 3
self.num_channels = 3
self.image_size = 336
self.encoder_seq_length = 231
def get_config(self):
return VipLlavaConfig(
text_config=self.text_config,
vision_config=self.vision_config,
ignore_index=self.ignore_index,
image_token_index=self.image_token_index,
projector_hidden_act=self.projector_hidden_act,
vision_feature_layers=self.vision_feature_layers,
)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[
self.batch_size,
self.vision_config["num_channels"],
self.vision_config["image_size"],
self.vision_config["image_size"],
]
)
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
attention_mask = input_ids.ne(1).to(torch_device)
# we are giving 3 images let's make sure we pass in 3 image tokens
input_ids[:, 1] = config.image_token_index
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
# Copied from transformers.tests.models.llava.test_modeling_llava.LlavaForConditionalGenerationModelTest with Llava->VipLlava
class VipLlavaForConditionalGenerationModelTest(ModelTesterMixin, unittest.TestCase):
"""
Model tester for `VipLlavaForConditionalGeneration`.
"""
all_model_classes = (VipLlavaForConditionalGeneration,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = True
test_head_masking = False
def setUp(self):
self.model_tester = VipLlavaVisionText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=VipLlavaConfig, has_text_modality=False)
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
# Copied from tests.test_modeling_common.ModelTesterMixin.test_resize_tokens_embeddings with config.vocab_size->config.text_config.vocab_size
def test_resize_tokens_embeddings(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
if self.model_tester.is_training is False:
model.eval()
model_vocab_size = config.text_config.vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# make sure that decoder_input_ids are resized as well
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
model_vocab_size = config.text_config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
self.assertTrue(model.config.text_config.vocab_size + 10, model_vocab_size)
model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
self.assertTrue(model_embed.weight.shape[0], model.config.text_config.vocab_size)
self.assertTrue(model.config.text_config.vocab_size, model.vocab_size)
model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
# Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
target_dimension = 128
model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0], target_dimension)
with self.assertRaisesRegex(
ValueError,
"Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
):
model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)
# Copied from tests.test_modeling_common.ModelTesterMixin.test_resize_embeddings_untied with config.vocab_size->config.text_config.vocab_size
def test_resize_embeddings_untied(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
original_config.tie_word_embeddings = False
# if model cannot untied embeddings -> leave test
if original_config.tie_word_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config).to(torch_device)
# if no output embeddings -> leave test
if model.get_output_embeddings() is None:
continue
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_vocab_size = config.text_config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Copied from tests.test_modeling_common.ModelTesterMixin.test_tie_model_weights with config.vocab_size->config.text_config.vocab_size
def test_tie_model_weights(self):
if not self.test_torchscript:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_same_values(layer_1, layer_2):
equal = True
for p1, p2 in zip(layer_1.weight, layer_2.weight):
if p1.data.ne(p2.data).sum() > 0:
equal = False
return equal
for model_class in self.all_model_classes:
config.torchscript = True
model_not_tied = model_class(config)
if model_not_tied.get_output_embeddings() is None:
continue
config_tied = copy.deepcopy(config)
config_tied.torchscript = False
model_tied = model_class(config_tied)
params_tied = list(model_tied.parameters())
# Check that the embedding layer and decoding layer are the same in size and in value
# self.assertTrue(check_same_values(embeddings, decoding))
# Check that after resize they remain tied.
model_tied.resize_token_embeddings(config.text_config.vocab_size + 10)
params_tied_2 = list(model_tied.parameters())
self.assertEqual(len(params_tied_2), len(params_tied))
@require_torch
class VipLlavaForConditionalGenerationIntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = AutoProcessor.from_pretrained("llava-hf/vip-llava-7b-hf")
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
@slow
@require_bitsandbytes
def test_small_model_integration_test(self):
model_id = "llava-hf/vip-llava-7b-hf"
model = VipLlavaForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True)
processor = AutoProcessor.from_pretrained(model_id)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-neg.png"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "USER: <image>\nCan you please describe this image?\nASSISTANT:"
inputs = processor(prompt, image, return_tensors="pt").to(torch_device, torch.float16)
outputs = model.generate(**inputs, max_new_tokens=10)
EXPECTED_OUTPUT = "USER: <image> \nCan you please describe this image?\nASSISTANT: The image features a brown and white cat sitting on"
self.assertEqual(processor.decode(outputs[0], skip_special_tokens=True), EXPECTED_OUTPUT)
@slow
@require_torch_gpu
def test_vipllava_merge_inputs_error_bug(self):
# This is a reproducer of https://github.com/huggingface/transformers/pull/28333 and makes sure it does not happen anymore
model_id = "llava-hf/vip-llava-7b-hf"
model = VipLlavaForConditionalGeneration.from_pretrained(
model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True
).to(torch_device)
# Simulate some user inputs
pixel_values = torch.randn(
(2, 3, 336, 336),
dtype=torch.float,
device=torch_device,
)
input_ids = torch.tensor(
[
[32001, 32001, 1, 15043, 7084, 32000, 29871, 13, 7900],
[1, 15043, 7084, 29901, 29871, 32000, 29871, 13, 7900],
],
dtype=torch.long,
device=torch_device,
)
attention_mask = torch.tensor(
[[0, 0, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1]],
dtype=torch.long,
device=torch_device,
)
# Make sure that the loss is properly computed
loss = model(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
labels=input_ids,
).loss
loss.backward()