transformers/tests/models/speecht5/test_processor_speecht5.py

186 lines
7.1 KiB
Python

# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the SpeechT5 processors."""
import json
import os
import shutil
import tempfile
import unittest
from transformers import is_speech_available, is_torch_available
from transformers.models.speecht5 import SpeechT5Tokenizer
from transformers.testing_utils import get_tests_dir, require_torch
from transformers.utils import FEATURE_EXTRACTOR_NAME
if is_speech_available() and is_torch_available():
from transformers import SpeechT5FeatureExtractor, SpeechT5Processor
from .test_feature_extraction_speecht5 import floats_list
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model")
@require_torch
class SpeechT5ProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
tokenizer = SpeechT5Tokenizer(SAMPLE_VOCAB)
tokenizer.save_pretrained(self.tmpdirname)
feature_extractor_map = {
"feature_size": 1,
"padding_value": 0.0,
"sampling_rate": 16000,
"do_normalize": False,
"num_mel_bins": 80,
"hop_length": 16,
"win_length": 64,
"win_function": "hann_window",
"fmin": 80,
"fmax": 7600,
"mel_floor": 1e-10,
"reduction_factor": 2,
"return_attention_mask": True,
}
self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
with open(self.feature_extraction_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(feature_extractor_map) + "\n")
def get_tokenizer(self, **kwargs):
return SpeechT5Tokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_feature_extractor(self, **kwargs):
return SpeechT5FeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_save_load_pretrained_default(self):
tokenizer = self.get_tokenizer()
feature_extractor = self.get_feature_extractor()
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
processor.save_pretrained(self.tmpdirname)
processor = SpeechT5Processor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, SpeechT5Tokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor, SpeechT5FeatureExtractor)
def test_save_load_pretrained_additional_features(self):
processor = SpeechT5Processor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
processor = SpeechT5Processor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, SpeechT5Tokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, SpeechT5FeatureExtractor)
def test_feature_extractor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
raw_speech = floats_list((3, 1000))
input_feat_extract = feature_extractor(audio=raw_speech, return_tensors="np")
input_processor = processor(audio=raw_speech, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_feature_extractor_target(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
raw_speech = floats_list((3, 1000))
input_feat_extract = feature_extractor(audio_target=raw_speech, return_tensors="np")
input_processor = processor(audio_target=raw_speech, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "This is a test string"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_tokenizer_target(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "This is a test string"
encoded_processor = processor(text_target=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_tokenizer_decode(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_model_input_names(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
self.assertListEqual(
processor.model_input_names,
feature_extractor.model_input_names,
msg="`processor` and `feature_extractor` model input names do not match",
)