207 lines
7.7 KiB
Python
207 lines
7.7 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Inc. team, The Microsoft Research team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import os
|
|
import unittest
|
|
|
|
from transformers import BatchEncoding
|
|
from transformers.models.bert.tokenization_bert import (
|
|
BasicTokenizer,
|
|
WordpieceTokenizer,
|
|
_is_control,
|
|
_is_punctuation,
|
|
_is_whitespace,
|
|
)
|
|
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
|
|
from transformers.testing_utils import require_torch, slow
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
class ProphetNetTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
from_pretrained_id = "microsoft/prophetnet-large-uncased"
|
|
tokenizer_class = ProphetNetTokenizer
|
|
test_rust_tokenizer = False
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
vocab_tokens = [
|
|
"[UNK]",
|
|
"[CLS]",
|
|
"[SEP]",
|
|
"[PAD]",
|
|
"[MASK]",
|
|
"want",
|
|
"##want",
|
|
"##ed",
|
|
"wa",
|
|
"un",
|
|
"runn",
|
|
"##ing",
|
|
",",
|
|
"low",
|
|
"lowest",
|
|
]
|
|
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
|
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
|
|
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
|
|
|
|
def get_input_output_texts(self, tokenizer):
|
|
input_text = "UNwant\u00E9d,running"
|
|
output_text = "unwanted, running"
|
|
return input_text, output_text
|
|
|
|
def test_full_tokenizer(self):
|
|
tokenizer = self.tokenizer_class(self.vocab_file)
|
|
|
|
tokens = tokenizer.tokenize("UNwant\u00E9d,running")
|
|
self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
|
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11])
|
|
|
|
def test_chinese(self):
|
|
tokenizer = BasicTokenizer()
|
|
|
|
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"])
|
|
|
|
def test_basic_tokenizer_lower(self):
|
|
tokenizer = BasicTokenizer(do_lower_case=True)
|
|
|
|
self.assertListEqual(
|
|
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"]
|
|
)
|
|
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
|
|
|
|
def test_basic_tokenizer_lower_strip_accents_false(self):
|
|
tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False)
|
|
|
|
self.assertListEqual(
|
|
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"]
|
|
)
|
|
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"])
|
|
|
|
def test_basic_tokenizer_lower_strip_accents_true(self):
|
|
tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True)
|
|
|
|
self.assertListEqual(
|
|
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]
|
|
)
|
|
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
|
|
|
|
def test_basic_tokenizer_lower_strip_accents_default(self):
|
|
tokenizer = BasicTokenizer(do_lower_case=True)
|
|
|
|
self.assertListEqual(
|
|
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]
|
|
)
|
|
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
|
|
|
|
def test_basic_tokenizer_no_lower(self):
|
|
tokenizer = BasicTokenizer(do_lower_case=False)
|
|
|
|
self.assertListEqual(
|
|
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"]
|
|
)
|
|
|
|
def test_basic_tokenizer_no_lower_strip_accents_false(self):
|
|
tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False)
|
|
|
|
self.assertListEqual(
|
|
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"]
|
|
)
|
|
|
|
def test_basic_tokenizer_no_lower_strip_accents_true(self):
|
|
tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True)
|
|
|
|
self.assertListEqual(
|
|
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"]
|
|
)
|
|
|
|
def test_basic_tokenizer_respects_never_split_tokens(self):
|
|
tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"])
|
|
|
|
self.assertListEqual(
|
|
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]
|
|
)
|
|
|
|
def test_wordpiece_tokenizer(self):
|
|
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
|
|
|
|
vocab = {}
|
|
for i, token in enumerate(vocab_tokens):
|
|
vocab[token] = i
|
|
tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]")
|
|
|
|
self.assertListEqual(tokenizer.tokenize(""), [])
|
|
|
|
self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"])
|
|
|
|
self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"])
|
|
|
|
@require_torch
|
|
def test_prepare_batch(self):
|
|
tokenizer = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased")
|
|
|
|
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
|
|
expected_src_tokens = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102]
|
|
batch = tokenizer(src_text, padding=True, return_tensors="pt")
|
|
self.assertIsInstance(batch, BatchEncoding)
|
|
result = list(batch.input_ids.numpy()[0])
|
|
self.assertListEqual(expected_src_tokens, result)
|
|
|
|
self.assertEqual((2, 9), batch.input_ids.shape)
|
|
self.assertEqual((2, 9), batch.attention_mask.shape)
|
|
|
|
def test_is_whitespace(self):
|
|
self.assertTrue(_is_whitespace(" "))
|
|
self.assertTrue(_is_whitespace("\t"))
|
|
self.assertTrue(_is_whitespace("\r"))
|
|
self.assertTrue(_is_whitespace("\n"))
|
|
self.assertTrue(_is_whitespace("\u00A0"))
|
|
|
|
self.assertFalse(_is_whitespace("A"))
|
|
self.assertFalse(_is_whitespace("-"))
|
|
|
|
def test_is_control(self):
|
|
self.assertTrue(_is_control("\u0005"))
|
|
|
|
self.assertFalse(_is_control("A"))
|
|
self.assertFalse(_is_control(" "))
|
|
self.assertFalse(_is_control("\t"))
|
|
self.assertFalse(_is_control("\r"))
|
|
|
|
def test_is_punctuation(self):
|
|
self.assertTrue(_is_punctuation("-"))
|
|
self.assertTrue(_is_punctuation("$"))
|
|
self.assertTrue(_is_punctuation("`"))
|
|
self.assertTrue(_is_punctuation("."))
|
|
|
|
self.assertFalse(_is_punctuation("A"))
|
|
self.assertFalse(_is_punctuation(" "))
|
|
|
|
@slow
|
|
def test_sequence_builders(self):
|
|
tokenizer = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased")
|
|
|
|
text = tokenizer.encode("sequence builders", add_special_tokens=False)
|
|
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
|
|
|
|
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
|
|
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
|
|
|
|
assert encoded_sentence == text + [102]
|
|
assert encoded_pair == text + [102] + text_2 + [102]
|