193 lines
7.2 KiB
Python
193 lines
7.2 KiB
Python
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_vision_available
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import (
|
|
AutoProcessor,
|
|
Pix2StructImageProcessor,
|
|
Pix2StructProcessor,
|
|
PreTrainedTokenizerFast,
|
|
T5Tokenizer,
|
|
)
|
|
|
|
|
|
@require_vision
|
|
@require_torch
|
|
class Pix2StructProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
|
|
image_processor = Pix2StructImageProcessor()
|
|
tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
|
|
|
|
processor = Pix2StructProcessor(image_processor, tokenizer)
|
|
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
|
|
|
|
def get_image_processor(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def prepare_image_inputs(self):
|
|
"""
|
|
This function prepares a list of random PIL images of the same fixed size.
|
|
"""
|
|
|
|
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
|
|
|
|
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
|
|
|
return image_inputs
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = Pix2StructProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
|
|
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = Pix2StructProcessor.from_pretrained(
|
|
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
|
|
)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast)
|
|
|
|
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.image_processor, Pix2StructImageProcessor)
|
|
|
|
def test_image_processor(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
input_feat_extract = image_processor(image_input, return_tensors="np")
|
|
input_processor = processor(images=image_input, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
def test_tokenizer(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
input_str = "lower newer"
|
|
|
|
encoded_processor = processor(text=input_str)
|
|
|
|
encoded_tok = tokenizer(input_str, return_token_type_ids=False, add_special_tokens=True)
|
|
|
|
for key in encoded_tok.keys():
|
|
self.assertListEqual(encoded_tok[key], encoded_processor[key])
|
|
|
|
def test_processor(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
|
|
self.assertListEqual(
|
|
list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"]
|
|
)
|
|
|
|
# test if it raises when no input is passed
|
|
with pytest.raises(ValueError):
|
|
processor()
|
|
|
|
def test_processor_max_patches(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
|
|
max_patches = [512, 1024, 2048, 4096]
|
|
expected_hidden_size = [770, 770, 770, 770]
|
|
# with text
|
|
for i, max_patch in enumerate(max_patches):
|
|
inputs = processor(text=input_str, images=image_input, max_patches=max_patch)
|
|
self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch)
|
|
self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i])
|
|
|
|
# without text input
|
|
for i, max_patch in enumerate(max_patches):
|
|
inputs = processor(images=image_input, max_patches=max_patch)
|
|
self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch)
|
|
self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i])
|
|
|
|
def test_tokenizer_decode(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
|
|
|
|
decoded_processor = processor.batch_decode(predicted_ids)
|
|
decoded_tok = tokenizer.batch_decode(predicted_ids)
|
|
|
|
self.assertListEqual(decoded_tok, decoded_processor)
|
|
|
|
def test_model_input_names(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
|
|
# For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"]
|
|
self.assertListEqual(
|
|
list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"]
|
|
)
|
|
|
|
inputs = processor(text=input_str)
|
|
|
|
# For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"]
|
|
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"])
|