347 lines
14 KiB
Python
347 lines
14 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import requests
|
|
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import Pix2StructImageProcessor
|
|
|
|
|
|
class Pix2StructImageProcessingTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
size=None,
|
|
do_normalize=True,
|
|
do_convert_rgb=True,
|
|
patch_size=None,
|
|
):
|
|
size = size if size is not None else {"height": 20, "width": 20}
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.size = size
|
|
self.do_normalize = do_normalize
|
|
self.do_convert_rgb = do_convert_rgb
|
|
self.max_patches = [512, 1024, 2048, 4096]
|
|
self.patch_size = patch_size if patch_size is not None else {"height": 16, "width": 16}
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
|
|
|
|
def prepare_dummy_image(self):
|
|
img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
|
|
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
|
return raw_image
|
|
|
|
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
return prepare_image_inputs(
|
|
batch_size=self.batch_size,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class Pix2StructImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = Pix2StructImageProcessor if is_vision_available() else None
|
|
|
|
def setUp(self):
|
|
self.image_processor_tester = Pix2StructImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processor, "do_normalize"))
|
|
self.assertTrue(hasattr(image_processor, "do_convert_rgb"))
|
|
|
|
def test_expected_patches(self):
|
|
dummy_image = self.image_processor_tester.prepare_dummy_image()
|
|
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
max_patch = 2048
|
|
|
|
inputs = image_processor(dummy_image, return_tensors="pt", max_patches=max_patch)
|
|
self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0606), atol=1e-3, rtol=1e-3))
|
|
|
|
def test_call_pil(self):
|
|
# Initialize image_processor
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PIL images
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, Image.Image)
|
|
|
|
# Test not batched input
|
|
expected_hidden_dim = (
|
|
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
|
|
* self.image_processor_tester.num_channels
|
|
) + 2
|
|
|
|
for max_patch in self.image_processor_tester.max_patches:
|
|
# Test not batched input
|
|
encoded_images = image_processor(
|
|
image_inputs[0], return_tensors="pt", max_patches=max_patch
|
|
).flattened_patches
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(1, max_patch, expected_hidden_dim),
|
|
)
|
|
|
|
# Test batched
|
|
encoded_images = image_processor(
|
|
image_inputs, return_tensors="pt", max_patches=max_patch
|
|
).flattened_patches
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim),
|
|
)
|
|
|
|
def test_call_vqa(self):
|
|
# Initialize image_processor
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PIL images
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, Image.Image)
|
|
|
|
# Test not batched input
|
|
expected_hidden_dim = (
|
|
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
|
|
* self.image_processor_tester.num_channels
|
|
) + 2
|
|
|
|
image_processor.is_vqa = True
|
|
|
|
for max_patch in self.image_processor_tester.max_patches:
|
|
# Test not batched input
|
|
with self.assertRaises(ValueError):
|
|
encoded_images = image_processor(
|
|
image_inputs[0], return_tensors="pt", max_patches=max_patch
|
|
).flattened_patches
|
|
|
|
dummy_text = "Hello"
|
|
|
|
encoded_images = image_processor(
|
|
image_inputs[0], return_tensors="pt", max_patches=max_patch, header_text=dummy_text
|
|
).flattened_patches
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(1, max_patch, expected_hidden_dim),
|
|
)
|
|
|
|
# Test batched
|
|
encoded_images = image_processor(
|
|
image_inputs, return_tensors="pt", max_patches=max_patch, header_text=dummy_text
|
|
).flattened_patches
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim),
|
|
)
|
|
|
|
def test_call_numpy(self):
|
|
# Initialize image_processor
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
# create random numpy tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
expected_hidden_dim = (
|
|
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
|
|
* self.image_processor_tester.num_channels
|
|
) + 2
|
|
|
|
for max_patch in self.image_processor_tester.max_patches:
|
|
# Test not batched input
|
|
encoded_images = image_processor(
|
|
image_inputs[0], return_tensors="pt", max_patches=max_patch
|
|
).flattened_patches
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(1, max_patch, expected_hidden_dim),
|
|
)
|
|
|
|
# Test batched
|
|
encoded_images = image_processor(
|
|
image_inputs, return_tensors="pt", max_patches=max_patch
|
|
).flattened_patches
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim),
|
|
)
|
|
|
|
def test_call_numpy_4_channels(self):
|
|
# Initialize image_processor
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
# create random numpy tensors
|
|
self.image_processor_tester.num_channels = 4
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
expected_hidden_dim = (
|
|
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
|
|
* self.image_processor_tester.num_channels
|
|
) + 2
|
|
|
|
for max_patch in self.image_processor_tester.max_patches:
|
|
# Test not batched input
|
|
encoded_images = image_processor(
|
|
image_inputs[0], return_tensors="pt", max_patches=max_patch, input_data_format="channels_first"
|
|
).flattened_patches
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(1, max_patch, expected_hidden_dim),
|
|
)
|
|
|
|
# Test batched
|
|
encoded_images = image_processor(
|
|
image_inputs, return_tensors="pt", max_patches=max_patch, input_data_format="channels_first"
|
|
).flattened_patches
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim),
|
|
)
|
|
self.image_processor_tester.num_channels = 3
|
|
|
|
def test_call_pytorch(self):
|
|
# Initialize image_processor
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PyTorch tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, torch.Tensor)
|
|
|
|
# Test not batched input
|
|
expected_hidden_dim = (
|
|
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
|
|
* self.image_processor_tester.num_channels
|
|
) + 2
|
|
|
|
for max_patch in self.image_processor_tester.max_patches:
|
|
# Test not batched input
|
|
encoded_images = image_processor(
|
|
image_inputs[0], return_tensors="pt", max_patches=max_patch
|
|
).flattened_patches
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(1, max_patch, expected_hidden_dim),
|
|
)
|
|
|
|
# Test batched
|
|
encoded_images = image_processor(
|
|
image_inputs, return_tensors="pt", max_patches=max_patch
|
|
).flattened_patches
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim),
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class Pix2StructImageProcessingTestFourChannels(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = Pix2StructImageProcessor if is_vision_available() else None
|
|
|
|
def setUp(self):
|
|
self.image_processor_tester = Pix2StructImageProcessingTester(self, num_channels=4)
|
|
self.expected_encoded_image_num_channels = 3
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processor, "do_normalize"))
|
|
self.assertTrue(hasattr(image_processor, "do_convert_rgb"))
|
|
|
|
def test_call_pil(self):
|
|
# Initialize image_processor
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PIL images
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, Image.Image)
|
|
|
|
# Test not batched input
|
|
expected_hidden_dim = (
|
|
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
|
|
* (self.image_processor_tester.num_channels - 1)
|
|
) + 2
|
|
|
|
for max_patch in self.image_processor_tester.max_patches:
|
|
# Test not batched input
|
|
encoded_images = image_processor(
|
|
image_inputs[0], return_tensors="pt", max_patches=max_patch
|
|
).flattened_patches
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(1, max_patch, expected_hidden_dim),
|
|
)
|
|
|
|
# Test batched
|
|
encoded_images = image_processor(
|
|
image_inputs, return_tensors="pt", max_patches=max_patch
|
|
).flattened_patches
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim),
|
|
)
|
|
|
|
@unittest.skip("Pix2StructImageProcessor does not support 4 channels yet") # FIXME Amy
|
|
def test_call_numpy(self):
|
|
return super().test_call_numpy()
|
|
|
|
@unittest.skip("Pix2StructImageProcessor does not support 4 channels yet") # FIXME Amy
|
|
def test_call_pytorch(self):
|
|
return super().test_call_torch()
|
|
|
|
@unittest.skip("Pix2StructImageProcessor does treat numpy and PIL 4 channel images consistently") # FIXME Amy
|
|
def test_call_numpy_4_channels(self):
|
|
return super().test_call_torch()
|