59 lines
2.2 KiB
Python
59 lines
2.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import annotations
|
|
|
|
import unittest
|
|
|
|
from transformers import is_tf_available
|
|
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
|
|
|
|
|
|
@require_tf
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class TFMT5ModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_small_integration_test(self):
|
|
"""
|
|
For comparision run:
|
|
>>> import t5 # pip install t5==0.7.1
|
|
>>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary
|
|
|
|
>>> path_to_mtf_small_mt5_checkpoint = '<fill_in>'
|
|
>>> path_to_mtf_small_mt5_spm_model_path = '<fill_in>'
|
|
>>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None)
|
|
>>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path, extra_ids=100)
|
|
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
|
|
"""
|
|
|
|
model = TFAutoModelForSeq2SeqLM.from_pretrained("google/mt5-small")
|
|
tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
|
|
|
|
input_ids = tokenizer("Hello there", return_tensors="tf").input_ids
|
|
labels = tokenizer("Hi I am", return_tensors="tf").input_ids
|
|
|
|
loss = model(input_ids, labels=labels).loss
|
|
mtf_score = -tf.math.reduce_mean(loss).numpy()
|
|
|
|
EXPECTED_SCORE = -21.228168
|
|
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2e-4)
|