466 lines
18 KiB
Python
466 lines
18 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import timeout_decorator # noqa
|
|
|
|
from transformers import MBartConfig, is_flax_available
|
|
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
|
|
from transformers.utils import cached_property
|
|
|
|
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
|
|
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
|
|
|
|
|
|
if is_flax_available():
|
|
import os
|
|
|
|
# The slow tests are often failing with OOM error on GPU
|
|
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
|
|
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
|
|
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
|
|
|
|
import jax
|
|
import jax.numpy as jnp
|
|
|
|
from transformers import AutoTokenizer
|
|
from transformers.models.mbart.modeling_flax_mbart import (
|
|
FlaxMBartForConditionalGeneration,
|
|
FlaxMBartForQuestionAnswering,
|
|
FlaxMBartForSequenceClassification,
|
|
FlaxMBartModel,
|
|
shift_tokens_right,
|
|
)
|
|
|
|
|
|
def prepare_mbart_inputs_dict(
|
|
config,
|
|
input_ids,
|
|
decoder_input_ids=None,
|
|
attention_mask=None,
|
|
decoder_attention_mask=None,
|
|
head_mask=None,
|
|
decoder_head_mask=None,
|
|
cross_attn_head_mask=None,
|
|
):
|
|
if attention_mask is None:
|
|
attention_mask = np.where(input_ids != config.pad_token_id, 1, 0)
|
|
if decoder_attention_mask is None:
|
|
decoder_attention_mask = np.where(decoder_input_ids != config.pad_token_id, 1, 0)
|
|
if head_mask is None:
|
|
head_mask = np.ones((config.encoder_layers, config.encoder_attention_heads))
|
|
if decoder_head_mask is None:
|
|
decoder_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads))
|
|
if cross_attn_head_mask is None:
|
|
cross_attn_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads))
|
|
return {
|
|
"input_ids": input_ids,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"attention_mask": attention_mask,
|
|
"decoder_attention_mask": decoder_attention_mask,
|
|
}
|
|
|
|
|
|
class FlaxMBartModelTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_labels=False,
|
|
vocab_size=99,
|
|
hidden_size=16,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=4,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=32,
|
|
eos_token_id=2,
|
|
pad_token_id=1,
|
|
bos_token_id=0,
|
|
decoder_start_token_id=2,
|
|
initializer_range=0.02,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.eos_token_id = eos_token_id
|
|
self.pad_token_id = pad_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.decoder_start_token_id = decoder_start_token_id
|
|
self.initializer_range = initializer_range
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size)
|
|
input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1)
|
|
|
|
decoder_input_ids = shift_tokens_right(input_ids, 1)
|
|
|
|
config = MBartConfig(
|
|
vocab_size=self.vocab_size,
|
|
d_model=self.hidden_size,
|
|
encoder_layers=self.num_hidden_layers,
|
|
decoder_layers=self.num_hidden_layers,
|
|
encoder_attention_heads=self.num_attention_heads,
|
|
decoder_attention_heads=self.num_attention_heads,
|
|
encoder_ffn_dim=self.intermediate_size,
|
|
decoder_ffn_dim=self.intermediate_size,
|
|
dropout=self.hidden_dropout_prob,
|
|
attention_dropout=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
eos_token_id=self.eos_token_id,
|
|
bos_token_id=self.bos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
decoder_start_token_id=self.decoder_start_token_id,
|
|
initializer_range=self.initializer_range,
|
|
use_cache=False,
|
|
)
|
|
inputs_dict = prepare_mbart_inputs_dict(config, input_ids, decoder_input_ids)
|
|
return config, inputs_dict
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config, inputs_dict = self.prepare_config_and_inputs()
|
|
return config, inputs_dict
|
|
|
|
def check_use_cache_forward(self, model_class_name, config, inputs_dict):
|
|
max_decoder_length = 20
|
|
model = model_class_name(config)
|
|
|
|
encoder_outputs = model.encode(inputs_dict["input_ids"])
|
|
|
|
decoder_input_ids, decoder_attention_mask = (
|
|
inputs_dict["decoder_input_ids"],
|
|
inputs_dict["decoder_attention_mask"],
|
|
)
|
|
|
|
past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs)
|
|
decoder_attention_mask = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype="i4")
|
|
|
|
decoder_position_ids = jnp.broadcast_to(
|
|
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :],
|
|
(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),
|
|
)
|
|
outputs_cache = model.decode(
|
|
decoder_input_ids[:, :-1],
|
|
encoder_outputs,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
past_key_values=past_key_values,
|
|
decoder_position_ids=decoder_position_ids,
|
|
)
|
|
|
|
decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4")
|
|
outputs_cache_next = model.decode(
|
|
decoder_input_ids[:, -1:],
|
|
encoder_outputs,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
past_key_values=outputs_cache.past_key_values,
|
|
decoder_position_ids=decoder_position_ids,
|
|
)
|
|
|
|
outputs = model.decode(decoder_input_ids, encoder_outputs)
|
|
|
|
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
|
|
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
|
|
|
|
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict):
|
|
max_decoder_length = 20
|
|
model = model_class_name(config)
|
|
|
|
encoder_outputs = model.encode(inputs_dict["input_ids"])
|
|
|
|
decoder_input_ids, decoder_attention_mask = (
|
|
inputs_dict["decoder_input_ids"],
|
|
inputs_dict["decoder_attention_mask"],
|
|
)
|
|
|
|
decoder_attention_mask_cache = jnp.concatenate(
|
|
[
|
|
decoder_attention_mask,
|
|
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
|
|
],
|
|
axis=-1,
|
|
)
|
|
|
|
past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs)
|
|
decoder_position_ids = jnp.broadcast_to(
|
|
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :],
|
|
(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),
|
|
)
|
|
|
|
outputs_cache = model.decode(
|
|
decoder_input_ids[:, :-1],
|
|
encoder_outputs,
|
|
decoder_attention_mask=decoder_attention_mask_cache,
|
|
past_key_values=past_key_values,
|
|
decoder_position_ids=decoder_position_ids,
|
|
)
|
|
decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4")
|
|
outputs_cache_next = model.decode(
|
|
decoder_input_ids[:, -1:],
|
|
encoder_outputs,
|
|
past_key_values=outputs_cache.past_key_values,
|
|
decoder_attention_mask=decoder_attention_mask_cache,
|
|
decoder_position_ids=decoder_position_ids,
|
|
)
|
|
|
|
outputs = model.decode(decoder_input_ids, encoder_outputs, decoder_attention_mask=decoder_attention_mask)
|
|
|
|
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
|
|
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
|
|
|
|
|
|
@require_flax
|
|
class MBartHeadTests(unittest.TestCase):
|
|
vocab_size = 99
|
|
|
|
def _get_config_and_data(self):
|
|
input_ids = np.array(
|
|
[
|
|
[71, 82, 18, 33, 46, 91, 2],
|
|
[68, 34, 26, 58, 30, 82, 2],
|
|
[5, 97, 17, 39, 94, 40, 2],
|
|
[76, 83, 94, 25, 70, 78, 2],
|
|
[87, 59, 41, 35, 48, 66, 2],
|
|
[55, 13, 16, 58, 5, 2, 1], # note padding
|
|
[64, 27, 31, 51, 12, 75, 2],
|
|
[52, 64, 86, 17, 83, 39, 2],
|
|
[48, 61, 9, 24, 71, 82, 2],
|
|
[26, 1, 60, 48, 22, 13, 2],
|
|
[21, 5, 62, 28, 14, 76, 2],
|
|
[45, 98, 37, 86, 59, 48, 2],
|
|
[70, 70, 50, 9, 28, 0, 2],
|
|
],
|
|
dtype=np.int64,
|
|
)
|
|
|
|
batch_size = input_ids.shape[0]
|
|
config = MBartConfig(
|
|
vocab_size=self.vocab_size,
|
|
d_model=24,
|
|
encoder_layers=2,
|
|
decoder_layers=2,
|
|
encoder_attention_heads=2,
|
|
decoder_attention_heads=2,
|
|
encoder_ffn_dim=32,
|
|
decoder_ffn_dim=32,
|
|
max_position_embeddings=48,
|
|
eos_token_id=2,
|
|
pad_token_id=1,
|
|
bos_token_id=0,
|
|
)
|
|
return config, input_ids, batch_size
|
|
|
|
def test_sequence_classification_forward(self):
|
|
config, input_ids, batch_size = self._get_config_and_data()
|
|
model = FlaxMBartForSequenceClassification(config)
|
|
outputs = model(input_ids=input_ids, decoder_input_ids=input_ids)
|
|
expected_shape = (batch_size, config.num_labels)
|
|
self.assertEqual(outputs["logits"].shape, expected_shape)
|
|
|
|
def test_question_answering_forward(self):
|
|
config, input_ids, batch_size = self._get_config_and_data()
|
|
model = FlaxMBartForQuestionAnswering(config)
|
|
outputs = model(input_ids=input_ids)
|
|
|
|
self.assertEqual(outputs["start_logits"].shape, input_ids.shape)
|
|
self.assertEqual(outputs["end_logits"].shape, input_ids.shape)
|
|
|
|
# @timeout_decorator.timeout(1) # not working with the decorator so far
|
|
def test_lm_forward(self):
|
|
config, input_ids, batch_size = self._get_config_and_data()
|
|
lm_model = FlaxMBartForConditionalGeneration(config)
|
|
outputs = lm_model(input_ids=input_ids)
|
|
expected_shape = (batch_size, input_ids.shape[1], config.vocab_size)
|
|
self.assertEqual(outputs["logits"].shape, expected_shape)
|
|
|
|
def test_lm_uneven_forward(self):
|
|
config = MBartConfig(
|
|
vocab_size=self.vocab_size,
|
|
d_model=14,
|
|
encoder_layers=2,
|
|
decoder_layers=2,
|
|
encoder_attention_heads=2,
|
|
decoder_attention_heads=2,
|
|
encoder_ffn_dim=8,
|
|
decoder_ffn_dim=8,
|
|
max_position_embeddings=48,
|
|
)
|
|
lm_model = FlaxMBartForConditionalGeneration(config)
|
|
context = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.int64)
|
|
summary = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.int64)
|
|
outputs = lm_model(input_ids=context, decoder_input_ids=summary)
|
|
expected_shape = (*summary.shape, config.vocab_size)
|
|
self.assertEqual(outputs["logits"].shape, expected_shape)
|
|
|
|
def test_shift_tokens_right(self):
|
|
input_ids = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.int64)
|
|
shifted = shift_tokens_right(input_ids, 1)
|
|
n_pad_before = np.equal(input_ids, 1).astype(np.float32).sum()
|
|
n_pad_after = np.equal(shifted, 1).astype(np.float32).sum()
|
|
self.assertEqual(shifted.shape, input_ids.shape)
|
|
self.assertEqual(n_pad_after, n_pad_before - 1)
|
|
self.assertTrue(np.equal(shifted[:, 0], 2).all())
|
|
|
|
|
|
@require_flax
|
|
class FlaxMBartModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin):
|
|
is_encoder_decoder = True
|
|
all_model_classes = (
|
|
(
|
|
FlaxMBartModel,
|
|
FlaxMBartForConditionalGeneration,
|
|
FlaxMBartForSequenceClassification,
|
|
FlaxMBartForQuestionAnswering,
|
|
)
|
|
if is_flax_available()
|
|
else ()
|
|
)
|
|
all_generative_model_classes = (FlaxMBartForConditionalGeneration,) if is_flax_available() else ()
|
|
|
|
def setUp(self):
|
|
self.model_tester = FlaxMBartModelTester(self)
|
|
|
|
def test_use_cache_forward(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
|
|
for model_class in self.all_model_classes:
|
|
self.model_tester.check_use_cache_forward(model_class, config, inputs_dict)
|
|
|
|
def test_use_cache_forward_with_attn_mask(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
|
|
for model_class in self.all_model_classes:
|
|
self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict)
|
|
|
|
def test_encode(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
with self.subTest(model_class.__name__):
|
|
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
|
|
model = model_class(config)
|
|
|
|
@jax.jit
|
|
def encode_jitted(input_ids, attention_mask=None, **kwargs):
|
|
return model.encode(input_ids=input_ids, attention_mask=attention_mask)
|
|
|
|
with self.subTest("JIT Enabled"):
|
|
jitted_outputs = encode_jitted(**prepared_inputs_dict).to_tuple()
|
|
|
|
with self.subTest("JIT Disabled"):
|
|
with jax.disable_jit():
|
|
outputs = encode_jitted(**prepared_inputs_dict).to_tuple()
|
|
|
|
self.assertEqual(len(outputs), len(jitted_outputs))
|
|
for jitted_output, output in zip(jitted_outputs, outputs):
|
|
self.assertEqual(jitted_output.shape, output.shape)
|
|
|
|
def test_decode(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
with self.subTest(model_class.__name__):
|
|
model = model_class(config)
|
|
encoder_outputs = model.encode(inputs_dict["input_ids"], inputs_dict["attention_mask"])
|
|
|
|
prepared_inputs_dict = {
|
|
"decoder_input_ids": inputs_dict["decoder_input_ids"],
|
|
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
|
|
"encoder_outputs": encoder_outputs,
|
|
}
|
|
|
|
@jax.jit
|
|
def decode_jitted(decoder_input_ids, decoder_attention_mask, encoder_outputs):
|
|
return model.decode(
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
encoder_outputs=encoder_outputs,
|
|
)
|
|
|
|
with self.subTest("JIT Enabled"):
|
|
jitted_outputs = decode_jitted(**prepared_inputs_dict).to_tuple()
|
|
|
|
with self.subTest("JIT Disabled"):
|
|
with jax.disable_jit():
|
|
outputs = decode_jitted(**prepared_inputs_dict).to_tuple()
|
|
|
|
self.assertEqual(len(outputs), len(jitted_outputs))
|
|
for jitted_output, output in zip(jitted_outputs, outputs):
|
|
self.assertEqual(jitted_output.shape, output.shape)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_class_name in self.all_model_classes:
|
|
model = model_class_name.from_pretrained("facebook/mbart-large-cc25", from_pt=True)
|
|
# FlaxMBartForSequenceClassification expects eos token in input_ids
|
|
input_ids = np.ones((1, 1)) * model.config.eos_token_id
|
|
outputs = model(input_ids)
|
|
self.assertIsNotNone(outputs)
|
|
|
|
|
|
@require_flax
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class FlaxMBartModelIntegrationTest(unittest.TestCase):
|
|
src_text = [
|
|
" UN Chief Says There Is No Military Solution in Syria",
|
|
]
|
|
expected_text = [
|
|
"Şeful ONU declară că nu există o soluţie militară în Siria",
|
|
]
|
|
model_name = "facebook/mbart-large-en-ro"
|
|
|
|
@cached_property
|
|
def tokenizer(self):
|
|
return AutoTokenizer.from_pretrained(self.model_name)
|
|
|
|
@cached_property
|
|
def model(self):
|
|
model = FlaxMBartForConditionalGeneration.from_pretrained(self.model_name, from_pt=True)
|
|
return model
|
|
|
|
def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
|
|
generated_words = self.translate_src_text(**tokenizer_kwargs)
|
|
self.assertListEqual(self.expected_text, generated_words)
|
|
|
|
def translate_src_text(self, **tokenizer_kwargs):
|
|
model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, return_tensors="np")
|
|
generated_ids = self.model.generate(
|
|
model_inputs.input_ids,
|
|
attention_mask=model_inputs.attention_mask,
|
|
decoder_start_token_id=self.tokenizer.lang_code_to_id["ro_RO"],
|
|
early_stopping=True,
|
|
num_beams=2,
|
|
).sequences
|
|
generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
|
return generated_words
|
|
|
|
@slow
|
|
def test_batch_generation_en_ro(self):
|
|
self._assert_generated_batch_equal_expected()
|