345 lines
14 KiB
Python
345 lines
14 KiB
Python
# coding=utf-8
|
|
# Copyright Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from __future__ import annotations
|
|
|
|
import unittest
|
|
|
|
from transformers import LEDConfig, is_tf_available
|
|
from transformers.testing_utils import require_tf, slow
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
from transformers import TFLEDForConditionalGeneration, TFLEDModel
|
|
|
|
|
|
@require_tf
|
|
class TFLEDModelTester:
|
|
config_cls = LEDConfig
|
|
config_updates = {}
|
|
hidden_act = "gelu"
|
|
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_labels=False,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=20,
|
|
eos_token_id=2,
|
|
pad_token_id=1,
|
|
bos_token_id=0,
|
|
attention_window=4,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.eos_token_id = eos_token_id
|
|
self.pad_token_id = pad_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.attention_window = attention_window
|
|
|
|
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
|
|
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
|
|
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
|
|
# because its local attention only attends to `self.attention_window` and one before and one after
|
|
self.key_length = self.attention_window + 2
|
|
|
|
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
|
|
# the `test_attention_outputs` and `test_hidden_states_output` tests
|
|
self.encoder_seq_length = (
|
|
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
|
|
eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
|
|
input_ids = tf.concat([input_ids, eos_tensor], axis=1)
|
|
|
|
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
config = self.config_cls(
|
|
vocab_size=self.vocab_size,
|
|
d_model=self.hidden_size,
|
|
encoder_layers=self.num_hidden_layers,
|
|
decoder_layers=self.num_hidden_layers,
|
|
encoder_attention_heads=self.num_attention_heads,
|
|
decoder_attention_heads=self.num_attention_heads,
|
|
encoder_ffn_dim=self.intermediate_size,
|
|
decoder_ffn_dim=self.intermediate_size,
|
|
dropout=self.hidden_dropout_prob,
|
|
attention_dropout=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
eos_token_ids=[2],
|
|
bos_token_id=self.bos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
decoder_start_token_id=self.pad_token_id,
|
|
attention_window=self.attention_window,
|
|
**self.config_updates,
|
|
)
|
|
inputs_dict = prepare_led_inputs_dict(config, input_ids, decoder_input_ids)
|
|
global_attention_mask = tf.concat(
|
|
[tf.zeros_like(input_ids)[:, :-1], tf.ones_like(input_ids)[:, -1:]],
|
|
axis=-1,
|
|
)
|
|
inputs_dict["global_attention_mask"] = global_attention_mask
|
|
return config, inputs_dict
|
|
|
|
def check_decoder_model_past_large_inputs(self, config, inputs_dict):
|
|
model = TFLEDModel(config=config).get_decoder()
|
|
input_ids = inputs_dict["input_ids"]
|
|
|
|
input_ids = input_ids[:1, :]
|
|
attention_mask = inputs_dict["attention_mask"][:1, :]
|
|
self.batch_size = 1
|
|
|
|
# first forward pass
|
|
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
|
|
|
|
output, past_key_values = outputs.to_tuple()
|
|
|
|
# create hypothetical next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
|
next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8)
|
|
|
|
# append to next input_ids and
|
|
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
|
|
next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)
|
|
|
|
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
|
|
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]
|
|
|
|
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
|
|
|
|
# select random slice
|
|
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
|
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
|
|
output_from_past_slice = output_from_past[:, :, random_slice_idx]
|
|
|
|
# test that outputs are equal for slice
|
|
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
|
|
|
|
|
|
def prepare_led_inputs_dict(
|
|
config,
|
|
input_ids,
|
|
decoder_input_ids,
|
|
attention_mask=None,
|
|
decoder_attention_mask=None,
|
|
head_mask=None,
|
|
decoder_head_mask=None,
|
|
):
|
|
if attention_mask is None:
|
|
attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
|
|
if decoder_attention_mask is None:
|
|
decoder_attention_mask = tf.concat(
|
|
[
|
|
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8),
|
|
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8),
|
|
],
|
|
axis=-1,
|
|
)
|
|
if head_mask is None:
|
|
head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
|
|
if decoder_head_mask is None:
|
|
decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
|
|
return {
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_attention_mask": decoder_attention_mask,
|
|
"head_mask": head_mask,
|
|
"decoder_head_mask": decoder_head_mask,
|
|
}
|
|
|
|
|
|
@require_tf
|
|
class TFLEDModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
|
|
all_generative_model_classes = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"conversational": TFLEDForConditionalGeneration,
|
|
"feature-extraction": TFLEDModel,
|
|
"summarization": TFLEDForConditionalGeneration,
|
|
"text2text-generation": TFLEDForConditionalGeneration,
|
|
"translation": TFLEDForConditionalGeneration,
|
|
}
|
|
if is_tf_available()
|
|
else {}
|
|
)
|
|
is_encoder_decoder = True
|
|
test_pruning = False
|
|
test_head_masking = False
|
|
test_onnx = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = TFLEDModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=LEDConfig)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_decoder_model_past_large_inputs(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
|
|
self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
|
|
|
|
def test_attention_outputs(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
inputs_dict["global_attention_mask"] = tf.zeros_like(inputs_dict["attention_mask"])
|
|
num_global_attn_indices = 2
|
|
inputs_dict["global_attention_mask"] = tf.where(
|
|
tf.range(self.model_tester.seq_length)[None, :] < num_global_attn_indices,
|
|
1,
|
|
inputs_dict["global_attention_mask"],
|
|
)
|
|
|
|
config.return_dict = True
|
|
seq_length = self.model_tester.seq_length
|
|
encoder_seq_length = self.model_tester.encoder_seq_length
|
|
|
|
def check_decoder_attentions_output(outputs):
|
|
decoder_attentions = outputs.decoder_attentions
|
|
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(decoder_attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, seq_length, seq_length],
|
|
)
|
|
|
|
def check_encoder_attentions_output(outputs):
|
|
attentions = [t.numpy() for t in outputs.encoder_attentions]
|
|
global_attentions = [t.numpy() for t in outputs.encoder_global_attentions]
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
self.assertEqual(len(global_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, seq_length, seq_length],
|
|
)
|
|
self.assertListEqual(
|
|
list(global_attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices],
|
|
)
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["use_cache"] = False
|
|
config.output_hidden_states = False
|
|
model = model_class(config)
|
|
outputs = model(self._prepare_for_class(inputs_dict, model_class))
|
|
out_len = len(outputs)
|
|
self.assertEqual(config.output_hidden_states, False)
|
|
check_encoder_attentions_output(outputs)
|
|
|
|
if self.is_encoder_decoder:
|
|
model = model_class(config)
|
|
outputs = model(self._prepare_for_class(inputs_dict, model_class))
|
|
self.assertEqual(config.output_hidden_states, False)
|
|
check_decoder_attentions_output(outputs)
|
|
|
|
# Check that output attentions can also be changed via the config
|
|
del inputs_dict["output_attentions"]
|
|
config.output_attentions = True
|
|
model = model_class(config)
|
|
outputs = model(self._prepare_for_class(inputs_dict, model_class))
|
|
self.assertEqual(config.output_hidden_states, False)
|
|
check_encoder_attentions_output(outputs)
|
|
|
|
# Check attention is always last and order is fine
|
|
inputs_dict["output_attentions"] = True
|
|
config.output_hidden_states = True
|
|
model = model_class(config)
|
|
outputs = model(self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
|
|
self.assertEqual(model.config.output_hidden_states, True)
|
|
check_encoder_attentions_output(outputs)
|
|
|
|
@unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing.")
|
|
def test_saved_model_creation(self):
|
|
pass
|
|
|
|
def test_generate_with_headmasking(self):
|
|
# TODO: Head-masking not yet implement
|
|
pass
|
|
|
|
|
|
def _long_tensor(tok_lst):
|
|
return tf.constant(tok_lst, dtype=tf.int32)
|
|
|
|
|
|
TOLERANCE = 1e-4
|
|
|
|
|
|
@slow
|
|
@require_tf
|
|
class TFLEDModelIntegrationTest(unittest.TestCase):
|
|
def test_inference_no_head(self):
|
|
model = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384").led
|
|
|
|
# change to intended input here
|
|
input_ids = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
|
|
decoder_input_ids = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
|
|
inputs_dict = prepare_led_inputs_dict(model.config, input_ids, decoder_input_ids)
|
|
output = model(**inputs_dict)[0]
|
|
expected_shape = (1, 1024, 768)
|
|
self.assertEqual(output.shape, expected_shape)
|
|
# change to expected output here
|
|
expected_slice = tf.convert_to_tensor(
|
|
[[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]],
|
|
)
|
|
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-3)
|
|
|
|
def test_inference_with_head(self):
|
|
model = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384")
|
|
|
|
# change to intended input here
|
|
input_ids = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
|
|
decoder_input_ids = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
|
|
inputs_dict = prepare_led_inputs_dict(model.config, input_ids, decoder_input_ids)
|
|
output = model(**inputs_dict)[0]
|
|
expected_shape = (1, 1024, model.config.vocab_size)
|
|
self.assertEqual(output.shape, expected_shape)
|
|
# change to expected output here
|
|
expected_slice = tf.convert_to_tensor(
|
|
[[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]],
|
|
)
|
|
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-3, rtol=1e-3)
|