371 lines
16 KiB
Python
371 lines
16 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors, The Hugging Face Team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import annotations
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import LayoutLMConfig, is_tf_available
|
|
from transformers.testing_utils import require_tf, slow
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
from transformers.models.layoutlm.modeling_tf_layoutlm import (
|
|
TFLayoutLMForMaskedLM,
|
|
TFLayoutLMForQuestionAnswering,
|
|
TFLayoutLMForSequenceClassification,
|
|
TFLayoutLMForTokenClassification,
|
|
TFLayoutLMModel,
|
|
)
|
|
|
|
|
|
class TFLayoutLMModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
scope=None,
|
|
range_bbox=1000,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.scope = scope
|
|
self.range_bbox = range_bbox
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
# convert bbox to numpy since TF does not support item assignment
|
|
bbox = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox).numpy()
|
|
# Ensure that bbox is legal
|
|
for i in range(bbox.shape[0]):
|
|
for j in range(bbox.shape[1]):
|
|
if bbox[i, j, 3] < bbox[i, j, 1]:
|
|
t = bbox[i, j, 3]
|
|
bbox[i, j, 3] = bbox[i, j, 1]
|
|
bbox[i, j, 1] = t
|
|
if bbox[i, j, 2] < bbox[i, j, 0]:
|
|
t = bbox[i, j, 2]
|
|
bbox[i, j, 2] = bbox[i, j, 0]
|
|
bbox[i, j, 0] = t
|
|
bbox = tf.convert_to_tensor(bbox)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = LayoutLMConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def create_and_check_model(
|
|
self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = TFLayoutLMModel(config=config)
|
|
|
|
result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids)
|
|
result = model(input_ids, bbox, token_type_ids=token_type_ids)
|
|
result = model(input_ids, bbox)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
def create_and_check_for_masked_lm(
|
|
self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = TFLayoutLMForMaskedLM(config=config)
|
|
|
|
result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_for_sequence_classification(
|
|
self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = TFLayoutLMForSequenceClassification(config=config)
|
|
|
|
result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
|
|
|
def create_and_check_for_token_classification(
|
|
self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = TFLayoutLMForTokenClassification(config=config)
|
|
|
|
result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
|
|
|
def create_and_check_for_question_answering(
|
|
self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = TFLayoutLMForQuestionAnswering(config=config)
|
|
|
|
result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids)
|
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
bbox,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {
|
|
"input_ids": input_ids,
|
|
"bbox": bbox,
|
|
"token_type_ids": token_type_ids,
|
|
"attention_mask": input_mask,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_tf
|
|
class TFLayoutLMModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
TFLayoutLMModel,
|
|
TFLayoutLMForMaskedLM,
|
|
TFLayoutLMForTokenClassification,
|
|
TFLayoutLMForSequenceClassification,
|
|
TFLayoutLMForQuestionAnswering,
|
|
)
|
|
if is_tf_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": TFLayoutLMModel,
|
|
"fill-mask": TFLayoutLMForMaskedLM,
|
|
"text-classification": TFLayoutLMForSequenceClassification,
|
|
"token-classification": TFLayoutLMForTokenClassification,
|
|
"zero-shot": TFLayoutLMForSequenceClassification,
|
|
}
|
|
if is_tf_available()
|
|
else {}
|
|
)
|
|
test_head_masking = False
|
|
test_onnx = True
|
|
onnx_min_opset = 10
|
|
|
|
def setUp(self):
|
|
self.model_tester = TFLayoutLMModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=LayoutLMConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_for_masked_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
|
|
|
|
def test_for_sequence_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
|
|
|
|
def test_for_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
|
|
|
|
def test_for_question_answering(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "microsoft/layoutlm-base-uncased"
|
|
model = TFLayoutLMModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
# TODO (Joao): fix me
|
|
@unittest.skip("Onnx compliancy broke with TF 2.10")
|
|
def test_onnx_compliancy(self):
|
|
pass
|
|
|
|
|
|
def prepare_layoutlm_batch_inputs():
|
|
# Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on:
|
|
# fmt: off
|
|
input_ids = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]]) # noqa: E231
|
|
attention_mask = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],]) # noqa: E231
|
|
bbox = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]]) # noqa: E231
|
|
token_type_ids = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]) # noqa: E231
|
|
# these are sequence labels (i.e. at the token level)
|
|
labels = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]]) # noqa: E231
|
|
# fmt: on
|
|
|
|
return input_ids, attention_mask, bbox, token_type_ids, labels
|
|
|
|
|
|
@require_tf
|
|
class TFLayoutLMModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_forward_pass_no_head(self):
|
|
model = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased")
|
|
|
|
input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs()
|
|
|
|
# forward pass
|
|
outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
|
|
|
# test the sequence output on [0, :3, :3]
|
|
expected_slice = tf.convert_to_tensor(
|
|
[[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]],
|
|
)
|
|
|
|
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-3))
|
|
|
|
# test the pooled output on [1, :3]
|
|
expected_slice = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552])
|
|
|
|
self.assertTrue(np.allclose(outputs.pooler_output[1, :3], expected_slice, atol=1e-3))
|
|
|
|
@slow
|
|
def test_forward_pass_sequence_classification(self):
|
|
# initialize model with randomly initialized sequence classification head
|
|
model = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=2)
|
|
|
|
input_ids, attention_mask, bbox, token_type_ids, _ = prepare_layoutlm_batch_inputs()
|
|
|
|
# forward pass
|
|
outputs = model(
|
|
input_ids=input_ids,
|
|
bbox=bbox,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
labels=tf.convert_to_tensor([1, 1]),
|
|
)
|
|
|
|
# test whether we get a loss as a scalar
|
|
loss = outputs.loss
|
|
expected_shape = (2,)
|
|
self.assertEqual(loss.shape, expected_shape)
|
|
|
|
# test the shape of the logits
|
|
logits = outputs.logits
|
|
expected_shape = (2, 2)
|
|
self.assertEqual(logits.shape, expected_shape)
|
|
|
|
@slow
|
|
def test_forward_pass_token_classification(self):
|
|
# initialize model with randomly initialized token classification head
|
|
model = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=13)
|
|
|
|
input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs()
|
|
|
|
# forward pass
|
|
outputs = model(
|
|
input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels
|
|
)
|
|
|
|
# test the shape of the logits
|
|
logits = outputs.logits
|
|
expected_shape = tf.convert_to_tensor((2, 25, 13))
|
|
self.assertEqual(logits.shape, expected_shape)
|
|
|
|
@slow
|
|
def test_forward_pass_question_answering(self):
|
|
# initialize model with randomly initialized token classification head
|
|
model = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased")
|
|
|
|
input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs()
|
|
|
|
# forward pass
|
|
outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
|
|
|
# test the shape of the logits
|
|
expected_shape = tf.convert_to_tensor((2, 25))
|
|
self.assertEqual(outputs.start_logits.shape, expected_shape)
|
|
self.assertEqual(outputs.end_logits.shape, expected_shape)
|