transformers/tests/models/idefics2/test_processing_idefics2.py

236 lines
11 KiB
Python

# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from io import BytesIO
import requests
from transformers import Idefics2Processor
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
@require_torch
@require_vision
class Idefics2ProcessorTest(unittest.TestCase):
def setUp(self):
self.processor = Idefics2Processor.from_pretrained("HuggingFaceM4/idefics2-8b", image_seq_len=2)
self.image1 = Image.open(
BytesIO(
requests.get(
"https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
).content
)
)
self.image2 = Image.open(
BytesIO(requests.get("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg").content)
)
self.image3 = Image.open(
BytesIO(
requests.get(
"https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg"
).content
)
)
self.bos_token = self.processor.tokenizer.bos_token
self.image_token = self.processor.image_token.content
self.fake_image_token = self.processor.fake_image_token.content
self.bos_token_id = self.processor.tokenizer.convert_tokens_to_ids(self.bos_token)
self.image_token_id = self.processor.tokenizer.convert_tokens_to_ids(self.image_token)
self.fake_image_token_id = self.processor.tokenizer.convert_tokens_to_ids(self.fake_image_token)
self.image_seq_len = self.processor.image_seq_len
def test_process_interleaved_images_prompts_no_image_splitting(self):
old_image_splitting = self.processor.image_processor.do_image_splitting
self.processor.image_processor.do_image_splitting = False
# Test that a single image is processed correctly
inputs = self.processor(images=self.image1)
self.assertEqual(inputs["pixel_values"].shape, (1, 1, 3, 653, 980))
self.assertEqual(inputs["pixel_attention_mask"].shape, (1, 1, 653, 980))
# fmt: on
# Test a single sample with image and text
image_str = "<image>"
text_str = "In this image, we see"
text = image_str + text_str
inputs = self.processor(text=text, images=self.image1)
# fmt: off
tokenized_sentence = self.processor.tokenizer(text_str, add_special_tokens=False)
expected_input_ids = [[self.bos_token_id] + [self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id] + tokenized_sentence["input_ids"]]
self.assertEqual(inputs["input_ids"], expected_input_ids)
self.assertEqual(inputs["attention_mask"], [[1] * len(expected_input_ids[0])])
self.assertEqual(inputs["pixel_values"].shape, (1, 1, 3, 653, 980))
self.assertEqual(inputs["pixel_attention_mask"].shape, (1, 1, 653, 980))
# fmt: on
# Test that batch is correctly processed
image_str = "<image>"
text_str_1 = "In this image, we see"
text_str_2 = "bla, bla"
text = [
image_str + text_str_1,
text_str_2 + image_str + image_str,
]
images = [[self.image1], [self.image2, self.image3]]
inputs = self.processor(text=text, images=images, padding=True)
# fmt: off
tokenized_sentence_1 = self.processor.tokenizer(text_str_1, add_special_tokens=False)
tokenized_sentence_2 = self.processor.tokenizer(text_str_2, add_special_tokens=False)
expected_input_ids_1 = [self.bos_token_id] + [self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id] + tokenized_sentence_1["input_ids"]
expected_input_ids_2 = [self.bos_token_id] + tokenized_sentence_2["input_ids"] + [self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id]
# Pad the first input to match the second input
pad_len = len(expected_input_ids_2) - len(expected_input_ids_1)
padded_expected_input_ids_1 = [0] * pad_len + expected_input_ids_1
self.assertEqual(
inputs["input_ids"], [padded_expected_input_ids_1, expected_input_ids_2]
)
self.assertEqual(
inputs["attention_mask"],
[[0] * pad_len + [1] * len(expected_input_ids_1), [1] * len(expected_input_ids_2)]
)
self.assertEqual(inputs['pixel_values'].shape, (2, 2, 3, 767, 980))
self.assertEqual(inputs['pixel_attention_mask'].shape, (2, 2, 767, 980))
# fmt: on
self.processor.image_processor.do_image_splitting = old_image_splitting
def test_process_interleaved_images_prompts_image_splitting(self):
old_image_splitting = self.processor.image_processor.do_image_splitting
self.processor.image_processor.do_image_splitting = True
# Test that a single image is processed correctly
inputs = self.processor(images=self.image1)
self.assertEqual(inputs["pixel_values"].shape, (1, 5, 3, 653, 980))
self.assertEqual(inputs["pixel_attention_mask"].shape, (1, 5, 653, 980))
# fmt: on
# Test a single sample with image and text
image_str = "<image>"
text_str = "In this image, we see"
text = image_str + text_str
inputs = self.processor(text=text, images=self.image1)
# fmt: off
tokenized_sentence = self.processor.tokenizer(text_str, add_special_tokens=False)
expected_input_ids = [[self.bos_token_id] + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * 5 + [self.fake_image_token_id] + tokenized_sentence["input_ids"]]
self.assertEqual(inputs["input_ids"], expected_input_ids)
self.assertEqual(inputs["attention_mask"], [[1] * len(expected_input_ids[0])])
self.assertEqual(inputs["pixel_values"].shape, (1, 5, 3, 653, 980))
self.assertEqual(inputs["pixel_attention_mask"].shape, (1, 5, 653, 980))
# fmt: on
# Test that batch is correctly processed
image_str = "<image>"
text_str_1 = "In this image, we see"
text_str_2 = "bla, bla"
text = [
image_str + text_str_1,
text_str_2 + image_str + image_str,
]
images = [[self.image1], [self.image2, self.image3]]
inputs = self.processor(text=text, images=images, padding=True)
# fmt: off
tokenized_sentence_1 = self.processor.tokenizer(text_str_1, add_special_tokens=False)
tokenized_sentence_2 = self.processor.tokenizer(text_str_2, add_special_tokens=False)
expected_input_ids_1 = [self.bos_token_id] + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * 5 + [self.fake_image_token_id] + tokenized_sentence_1["input_ids"]
expected_input_ids_2 = [self.bos_token_id] + tokenized_sentence_2["input_ids"] + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * 5 + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * 5 + [self.fake_image_token_id]
# Pad the first input to match the second input
pad_len = len(expected_input_ids_2) - len(expected_input_ids_1)
padded_expected_input_ids_1 = [0] * pad_len + expected_input_ids_1
self.assertEqual(
inputs["input_ids"], [padded_expected_input_ids_1, expected_input_ids_2]
)
self.assertEqual(
inputs["attention_mask"],
[[0] * pad_len + [1] * len(expected_input_ids_1), [1] * len(expected_input_ids_2)]
)
self.assertEqual(inputs['pixel_values'].shape, (2, 10, 3, 767, 980))
self.assertEqual(inputs['pixel_attention_mask'].shape, (2, 10, 767, 980))
# fmt: on
self.processor.image_processor.do_image_splitting = old_image_splitting
def test_add_special_tokens_processor(self):
image_str = "<image>"
text_str = "In this image, we see"
text = text_str + image_str
n_image_repeat = 5 if self.processor.image_processor.do_image_splitting else 1
# fmt: off
inputs = self.processor(text=text, images=self.image1, add_special_tokens=False)
tokenized_sentence = self.processor.tokenizer(text_str, add_special_tokens=False)
expected_input_ids = [tokenized_sentence["input_ids"] + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * n_image_repeat + [self.fake_image_token_id]]
self.assertEqual(inputs["input_ids"], expected_input_ids)
inputs = self.processor(text=text, images=self.image1)
expected_input_ids = [[self.bos_token_id] + tokenized_sentence["input_ids"] + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * n_image_repeat + [self.fake_image_token_id]]
self.assertEqual(inputs["input_ids"], expected_input_ids)
# fmt: on
def test_apply_chat_template(self):
# Message contains content which a mix of lists with images and image urls and string
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "What do these images show?"},
{"type": "image"},
{"type": "image"},
"What do these images show?",
],
},
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "The first image shows the statue of Liberty in New York. The second image picture depicts Idefix, the dog of Obelix in Asterix and Obelix.",
}
],
},
{"role": "user", "content": [{"type": "text", "text": "And who is that?"}]},
]
processor = self.processor
# Make short sequence length to test that the fake tokens are added correctly
rendered = processor.apply_chat_template(messages, add_generation_prompt=True)
expected_rendered = (
"User: What do these images show?<image><image><end_of_utterance>\n"
"Assistant: The first image shows the statue of Liberty in New York. The second image picture depicts Idefix, the dog of Obelix in Asterix and Obelix.<end_of_utterance>\n"
"User: And who is that?<end_of_utterance>\n"
"Assistant:"
)
self.assertEqual(rendered, expected_rendered)