transformers/tests/models/gemma/test_modeling_flax_gemma.py

267 lines
10 KiB
Python

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import AutoTokenizer, GemmaConfig, is_flax_available
from transformers.testing_utils import require_flax, require_read_token, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.gemma.modeling_flax_gemma import (
FlaxGemmaForCausalLM,
FlaxGemmaModel,
)
class FlaxGemmaModelTester:
def __init__(
self,
parent,
batch_size=2,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
num_key_value_heads=2,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
initializer_range=0.02,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = None
self.bos_token_id = vocab_size - 1
self.eos_token_id = vocab_size - 1
self.pad_token_id = vocab_size - 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = np.tril(np.ones((self.batch_size, self.seq_length)))
config = GemmaConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
head_dim=self.hidden_size // self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
use_cache=True,
is_decoder=False,
initializer_range=self.initializer_range,
)
return config, input_ids, input_mask
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
def check_use_cache_forward(self, model_class_name, config, input_ids, attention_mask):
max_decoder_length = 20
model = model_class_name(config)
past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length)
attention_mask = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="i4")
position_ids = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1)
)
outputs_cache = model(
input_ids[:, :-1],
attention_mask=attention_mask,
past_key_values=past_key_values,
position_ids=position_ids,
)
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model(
input_ids[:, -1:],
attention_mask=attention_mask,
past_key_values=outputs_cache.past_key_values,
position_ids=position_ids,
)
outputs = model(input_ids)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, input_ids, attention_mask):
max_decoder_length = 20
model = model_class_name(config)
attention_mask_cache = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))],
axis=-1,
)
past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length)
position_ids = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1)
)
outputs_cache = model(
input_ids[:, :-1],
attention_mask=attention_mask_cache,
past_key_values=past_key_values,
position_ids=position_ids,
)
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model(
input_ids[:, -1:],
past_key_values=outputs_cache.past_key_values,
attention_mask=attention_mask_cache,
position_ids=position_ids,
)
outputs = model(input_ids, attention_mask=attention_mask)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
@require_flax
class FlaxGemmaModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase):
all_model_classes = (FlaxGemmaModel, FlaxGemmaForCausalLM) if is_flax_available() else ()
all_generative_model_classes = (FlaxGemmaForCausalLM,) if is_flax_available() else ()
def setUp(self):
self.model_tester = FlaxGemmaModelTester(self)
def test_use_cache_forward(self):
for model_class_name in self.all_model_classes:
config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(model_class_name, config, input_ids, attention_mask)
def test_use_cache_forward_with_attn_mask(self):
for model_class_name in self.all_model_classes:
config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
model_class_name, config, input_ids, attention_mask
)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("google/gemma-2b", from_pt=True)
outputs = model(np.ones((1, 1)))
self.assertIsNotNone(outputs)
@slow
@require_flax
@require_read_token
class FlaxGemmaIntegrationTest(unittest.TestCase):
input_text = ["The capital of France is", "To play the perfect cover drive"]
model_id = "google/gemma-2b"
revision = "flax"
def setUp(self):
self.model, self.params = FlaxGemmaForCausalLM.from_pretrained(
self.model_id, revision=self.revision, _do_init=False
)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
self.tokenizer.padding_side = "left"
def test_logits(self):
inputs = self.tokenizer(self.input_text, return_tensors="np", padding=True)
# fmt: off
EXPECTED_MEAN = [
[-16.427, -21.386, -35.491, -36.258, -31.401, -36.370, -37.598],
[-21.386, -32.150, -33.155, -34.344, -34.706, -34.678, -38.495],
]
EXPECTED_SLICE = [-33.462, -16.481, -30.837, -32.195, -33.113]
# fmt: on
logits = self.model(**inputs, params=self.params).logits
diff_mean = jnp.abs(logits.mean(-1) - np.array(EXPECTED_MEAN)).max()
diff_slice = jnp.abs(logits[0, -1, 475:480] - np.array(EXPECTED_SLICE)).max()
self.assertAlmostEqual(diff_mean, 0, places=3)
self.assertAlmostEqual(diff_slice, 0, places=3)
def test_generation(self):
EXPECTED_TEXTS = [
"The capital of France is a city of contrasts. It is a city of history, of art, of culture, of fashion",
"To play the perfect cover drive, you need to have a good technique and a good mindset.\n\nThe cover drive is a shot",
]
inputs = self.tokenizer(self.input_text, return_tensors="np", padding=True)
output = self.model.generate(**inputs, params=self.params, max_new_tokens=20, do_sample=False)
output_text = self.tokenizer.batch_decode(output.sequences, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_jit_generation(self):
EXPECTED_TEXTS = [
"The capital of France is a city of contrasts. It is a city of history, culture, and art, but it is",
"To play the perfect cover drive, you need to have a good technique and a good mindset.\n\nThe cover drive is a shot",
]
inputs = self.tokenizer(self.input_text, return_tensors="np", padding=True)
def generate(input_ids, attention_mask):
outputs = self.model.generate(
input_ids, attention_mask=attention_mask, params=self.params, max_new_tokens=20, do_sample=False
)
return outputs
jit_generate = jax.jit(generate)
output_sequences = jit_generate(**inputs).sequences
output_text = self.tokenizer.batch_decode(output_sequences, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)